Page 57 - Read Online
P. 57
Saier et al. J Cancer Metastasis Treat 2021;7:43 https://dx.doi.org/10.20517/2394-4722.2021.87 Page 19 of 24
on human osteoblasts. Arch Oral Biol 2008;53:207-13. DOI PubMed
41. Peyruchaud O, Winding B, Pécheur I, Serre CM, Delmas P, Clézardin P. Early detection of bone metastases in a murine model using
fluorescent human breast cancer cells: application to the use of the bisphosphonate zoledronic acid in the treatment of osteolytic
lesions. J Bone Miner Res 2001;16:2027-34. DOI PubMed
42. Masuda A, Nakamura K, Izutsu K, et al. Serum autotaxin measurement in haematological malignancies: a promising marker for
follicular lymphoma. Br J Haematol 2008;143:60-70. DOI PubMed
43. Nakai Y, Ikeda H, Nakamura K, et al. Specific increase in serum autotaxin activity in patients with pancreatic cancer. Clin Biochem
2011;44:576-81. DOI PubMed
44. Zhang G, Zhao Z, Xu S, Ni L, Wang X. Expression of autotaxin mRNA in human hepatocellular carcinoma. Chin Med J (Engl)
1999;112:330-2. PubMed
45. Benesch MG, Tang X, Dewald J, et al. Tumor-induced inflammation in mammary adipose tissue stimulates a vicious cycle of
autotaxin expression and breast cancer progression. FASEB J 2015;29:3990-4000. DOI PubMed
46. Benesch MG, Ko YM, Tang X, et al. Autotaxin is an inflammatory mediator and therapeutic target in thyroid cancer. Endocr Relat
Cancer 2015;22:593-607. DOI PubMed
47. Guise TA, Yin JJ, Taylor SD, et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human
breast cancer-mediated osteolysis. J Clin Invest 1996;98:1544-9. DOI PubMed PMC
48. Aielli F, Ponzetti M, Rucci N. Bone metastasis pain, from the bench to the bedside. Int J Mol Sci 2019;20:280. DOI PubMed PMC
49. Yoneda T, Hata K, Nakanishi M, et al. Involvement of acidic microenvironment in the pathophysiology of cancer-associated bone
pain. Bone 2011;48:100-5. DOI PubMed
50. Zhao J, Pan HL, Li TT, Zhang YQ, Wei JY, Zhao ZQ. The sensitization of peripheral C-fibers to lysophosphatidic acid in bone
cancer pain. Life Sci 2010;87:120-5. DOI PubMed
51. Pan HL, Zhang YQ, Zhao ZQ. Involvement of lysophosphatidic acid in bone cancer pain by potentiation of TRPV1 via PKCε
pathway in dorsal root ganglion neurons. Mol Pain 2010;6:85. DOI PubMed PMC
52. Wu JX, Yuan XM, Wang Q, Wei W, Xu MY. Rho/ROCK acts downstream of lysophosphatidic acid receptor 1 in modulating P2X3
receptor-mediated bone cancer pain in rats. Mol Pain 2016;12:174480691664492. DOI PubMed PMC
53. D'avanzo N. Lipid regulation of sodium channels. Curr Top Membr 2016;78:353-407. DOI PubMed
54. Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 2008;9:139-50.
DOI PubMed
55. Kitatani K, Idkowiak-Baldys J, Hannun YA. The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal
2008;20:1010-8. DOI PubMed PMC
56. Hannun YA, Obeid LM. Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol 2018;19:175-91. DOI
PubMed PMC
57. Ramos-Perez WD, Fang V, Escalante-Alcalde D, Cammer M, Schwab SR. A map of the distribution of sphingosine 1-phosphate in
the spleen. Nat Immunol 2015;16:1245-52. DOI PubMed PMC
58. Schwab SR, Pereira JP, Matloubian M, Xu Y, Huang Y, Cyster JG. Lymphocyte sequestration through S1P lyase inhibition and
disruption of S1P gradients. Science 2005;309:1735-9. DOI PubMed
59. Yanagida K, Hla T. Vascular and immunobiology of the circulatory sphingosine 1-phosphate gradient. Annu Rev Physiol 2017;79:67-
91. DOI PubMed PMC
60. Sartawi Z, Schipani E, Ryan KB, Waeber C. Sphingosine 1-phosphate (S1P) signalling: Role in bone biology and potential
therapeutic target for bone repair. Pharmacol Res 2017;125:232-45. DOI PubMed PMC
61. Vu TM, Ishizu AN, Foo JC, et al. Mfsd2b is essential for the sphingosine-1-phosphate export in erythrocytes and platelets. Nature
2017;550:524-8. DOI PubMed
62. Proia RL, Hla T. Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J Clin Invest 2015;125:1379-87.
DOI PubMed PMC
63. Thuy AV, Reimann CM, Hemdan NY, Gräler MH. Sphingosine 1-phosphate in blood: function, metabolism, and fate. Cell Physiol
Biochem 2014;34:158-71. DOI PubMed
64. Christoffersen C, Obinata H, Kumaraswamy SB, et al. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated
apolipoprotein M. Proc Natl Acad Sci U S A 2011;108:9613-8. DOI PubMed PMC
65. Obinata H, Kuo A, Wada Y, et al. Identification of ApoA4 as a sphingosine 1-phosphate chaperone in ApoM- and albumin-deficient
mice. J Lipid Res 2019;60:1912-21. DOI PubMed PMC
66. Cyster JG, Schwab SR. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol 2012;30:69-94.
DOI PubMed
67. Hla T, Venkataraman K, Michaud J. The vascular S1P gradient-cellular sources and biological significance. Biochim Biophys Acta
2008;1781:477-82. DOI PubMed PMC
68. Chun J, Hla T, Lynch KR, Spiegel S, Moolenaar WH. International Union of Basic and Clinical Pharmacology. LXXVIII.
Lysophospholipid receptor nomenclature. Pharmacol Rev 2010;62:579-87. DOI PubMed PMC
69. Rosen H, Stevens RC, Hanson M, Roberts E, Oldstone MB. Sphingosine-1-phosphate and its receptors: structure, signaling, and
influence. Annu Rev Biochem 2013;82:637-62. DOI PubMed
70. Ishii M, Kikuta J. Sphingosine-1-phosphate signaling controlling osteoclasts and bone homeostasis. Biochim Biophys Acta
2013;1831:223-7. DOI PubMed
71. Keller J, Catala-Lehnen P, Huebner AK, et al. Calcitonin controls bone formation by inhibiting the release of sphingosine 1-