Page 59 - Read Online
P. 59
Saier et al. J Cancer Metastasis Treat 2021;7:43 https://dx.doi.org/10.20517/2394-4722.2021.87 Page 21 of 24
cancer to 5-fluorouracil via promoting intracellular uracil generation. Acta Pharmacol Sin 2021;42:460-9. DOI PubMed PMC
103. Olesch C, Sirait-Fischer E, Berkefeld M, et al. S1PR4 ablation reduces tumor growth and improves chemotherapy via CD8+ T cell
expansion. J Clin Invest 2020;130:5461-76. DOI PubMed PMC
104. Mitchell JA, Warner TD. Cyclo-oxygenase-2: pharmacology, physiology, biochemistry and relevance to NSAID therapy. Br J
Pharmacol 1999;128:1121-32. DOI PubMed PMC
105. Wang D, Dubois RN. Eicosanoids and cancer. Nat Rev Cancer 2010;10:181-93. DOI PubMed PMC
106. Peters-Golden M, Henderson WR Jr. Leukotrienes. N Engl J Med 2007;357:1841-54. DOI PubMed
107. Yokomizo T, Izumi T, Chang K, Takuwa Y, Shimizu T. A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis.
Nature 1997;387:620-4. DOI PubMed
108. Bäck M, Powell WS, Dahlén SE, et al. Update on leukotriene, lipoxin and oxoeicosanoid receptors: IUPHAR Review 7. Br J
Pharmacol 2014;171:3551-74. DOI PubMed PMC
109. Lynch KR, O'Neill GP, Liu Q, et al. Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature 1999;399:789-93.
DOI PubMed
110. Heise CE, O'Dowd BF, Figueroa DJ, et al. Characterization of the human cysteinyl leukotriene 2 receptor. J Biol Chem
2000;275:30531-6. DOI PubMed
111. Pilbeam CC, Harrison JR, Raisz LG. Chapter 54 - Prostaglandins and Bone Metabolism. In: Bilezikian JP, Raisz LG, Rodan GA,
editors. Principles of Bone Biology (Second Edition). San Diego: Academic Press; 2002. p. 979-94.
112. Hikiji H, Ishii S, Yokomizo T, Takato T, Shimizu T. A distinctive role of the leukotriene B4 receptor BLT1 in osteoclastic activity
during bone loss. Proc Natl Acad Sci U S A 2009;106:21294-9. DOI PubMed PMC
113. Miyaura C, Inada M, Suzawa T, et al. Impaired bone resorption to prostaglandin E2 in prostaglandin E receptor EP4-knockout mice.
J Biol Chem 2000;275:19819-23. DOI PubMed
114. Sakuma Y, Tanaka K, Suda M, et al. Crucial involvement of the EP4 subtype of prostaglandin E receptor in osteoclast formation by
proinflammatory cytokines and lipopolysaccharide. J Bone Miner Res 2000;15:218-27. DOI PubMed
115. Wani MR, Fuller K, Kim NS, Choi Y, Chambers T. Prostaglandin E2 cooperates with TRANCE in osteoclast induction from
hemopoietic precursors: synergistic activation of differentiation, cell spreading, and fusion. Endocrinology 1999;140:1927-35. DOI
PubMed
116. Kobayashi Y, Take I, Yamashita T, et al. Prostaglandin E2 receptors EP2 and EP4 are downregulated during differentiation of mouse
osteoclasts from their precursors. J Biol Chem 2005;280:24035-42. DOI PubMed
117. Yoshida K, Oida H, Kobayashi T, et al. Stimulation of bone formation and prevention of bone loss by prostaglandin E EP4 receptor
activation. Proc Natl Acad Sci U S A 2002;99:4580-5. DOI PubMed PMC
118. Alander CB, Raisz LG. Effects of selective prostaglandins E2 receptor agonists on cultured calvarial murine osteoblastic cells.
Prostaglandins Other Lipid Mediat 2006;81:178-83. DOI PubMed PMC
119. Forwood MR. Inducible cyclo-oxygenase (COX-2) mediates the induction of bone formation by mechanical loading in vivo. J Bone
Miner Res 1996;11:1688-93. DOI PubMed
120. Bonewald LF, Flynn M, Qiao M, Dallas MR, Mundy GR, Boyce BF. Mice lacking 5-lipoxygenase have increased cortical bone
thickness. Adv Exp Med Biol 1997;433:299-302. DOI PubMed
121. Le P, Kawai M, Bornstein S, DeMambro VE, Horowitz MC, Rosen CJ. A high-fat diet induces bone loss in mice lacking the Alox5
gene. Endocrinology 2012;153:6-16. DOI PubMed PMC
122. Moura AP, Taddei SR, Queiroz-Junior CM, et al. The relevance of leukotrienes for bone resorption induced by mechanical loading.
Bone 2014;69:133-8. DOI PubMed
123. Madeira MFM, Queiroz-Junior CM, Corrêa JD, et al. The role of 5-lipoxygenase in Aggregatibacter actinomycetemcomitans-induced
alveolar bone loss. J Clin Periodontol 2017;44:793-802. DOI PubMed
124. Zheng LX, Li KX, Hong FF, Yang SL. Pain and bone damage in rheumatoid arthritis: role of leukotriene B4. Clinical and
experimental rheumatology. 2019;37:872-8. PubMed
125. Lee JM, Park H, Noh AL, et al. 5-Lipoxygenase mediates RANKL-induced osteoclast formation via the cysteinyl leukotriene
receptor 1. J Immunol 2012;189:5284-92. DOI PubMed
126. Kang JH, Lim H, Lee DS, Yim M. Montelukast inhibits RANKLinduced osteoclast formation and bone loss via CysLTR1 and
P2Y12. Mol Med Rep 2018;18:2387-98. DOI PubMed
127. Zheng C, Shi X. Cysteinyl leukotriene receptor 1 (cysLT1R) regulates osteoclast differentiation and bone resorption. Artif Cells
Nanomed Biotechnol 2018;46:S64-70. DOI PubMed
128. Lee NK, Choi YG, Baik JY, et al. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood
2005;106:852-9. DOI PubMed
129. Luo X, Fu Y, Loza AJ, et al. Stromal-initiated changes in the bone promote metastatic niche development. Cell Rep 2016;14:82-92.
DOI PubMed PMC
130. Wei J, Chen S, Huang C, et al. The cysteinyl leukotriene receptor 1 (CysLT1R) antagonist montelukast suppresses matrix
metalloproteinase-13 expression induced by lipopolysaccharide. Int Immunopharmacol 2018;55:193-7. DOI PubMed
131. Boehmler AM, Drost A, Jaggy L, et al. The CysLT1 ligand leukotriene D4 supports alpha4beta1- and alpha5beta1-mediated adhesion
and proliferation of CD34+ hematopoietic progenitor cells. J Immunol 2009;182:6789-98. DOI PubMed
132. Drost AC, Seitz G, Boehmler A, et al. The G protein-coupled receptor CysLT1 mediates chemokine-like effects and prolongs survival
in chronic lymphocytic leukemia. Leuk Lymphoma 2012;53:665-73. DOI PubMed
133. Finetti F, Travelli C, Ercoli J, Colombo G, Buoso E, Trabalzini L. Prostaglandin E2 and cancer: insight into tumor progression and