Page 21 - Read Online
P. 21

Page 16 of 18       Cheng et al. J Cancer Metastasis Treat 2021;7:17  https://dx.doi.org/10.20517/2394-4722.2021.27

                   recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005;365:1687-717.  DOI  PubMed
               14.      Zhao H, Zhou L, Shangguan AJ, Bulun SE. Aromatase expression and regulation in breast and endometrial cancer. J Mol Endocrinol
                   2016;57:R19-33.  DOI  PubMed  PMC
               15.      Sjögren K, Lagerquist M, Moverare-Skrtic S, et al. Elevated aromatase expression in osteoblasts leads to increased bone mass without
                   systemic adverse effects. J Bone Miner Res 2009;24:1263-70.  DOI  PubMed
               16.      Nilsson ME, Vandenput L, Tivesten A, et al. Measurement of a comprehensive sex steroid profile in rodent serum by high-sensitive
                   gas chromatography-tandem mass spectrometry. Endocrinology 2015;156:2492-502.  DOI  PubMed
               17.      Osborne CK, Hobbs K, Clark GM. Effect of estrogens and antiestrogens on growth of human breast cancer cells in athymic nude mice.
                   Cancer Res 1985;45:584-90.  PubMed
               18.      Holen I, Walker M, Nutter F, et al. Oestrogen receptor positive breast cancer metastasis to bone: inhibition by targeting the bone
                   microenvironment in vivo. Clin Exp Metastasis 2016;33:211-24.  DOI  PubMed
               19.      Ogba N, Manning NG, Bliesner BS, et al. Luminal breast cancer metastases and tumor arousal from dormancy are promoted by direct
                   actions of estradiol and progesterone on the malignant cells. Breast Cancer Res 2014;16:48.  DOI  PubMed  PMC
               20.      Sowder ME, Johnson RW. Enrichment and detection of bone disseminated tumor cells in models of low tumor burden. Sci Rep
                   2018;8:14299.  DOI  PubMed  PMC
               21.      Canon J, Bryant R, Roudier M, Branstetter DG, Dougall WC. RANKL inhibition combined with tamoxifen treatment increases anti-
                   tumor efficacy and prevents tumor-induced bone destruction in an estrogen receptor-positive breast cancer bone metastasis model.
                   Breast Cancer Res Treat 2012;135:771-80.  DOI  PubMed
               22.      Fisher JL, Thomas-Mudge RJ, Elliott J, et al. Osteoprotegerin overexpression by breast cancer cells enhances orthotopic and osseous
                   tumor growth and contrasts with that delivered therapeutically. Cancer Res 2006;66:3620-8.  DOI  PubMed
                                                                                                +
               23.      Gawrzak S, Rinaldi L, Gregorio S, et al. MSK1 regulates luminal cell differentiation and metastatic dormancy in ER breast cancer.
                   Nat Cell Biol 2018;20:211-21.  DOI  PubMed
               24.      Johnson RW, Finger EC, Olcina MM, et al. Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the
                   bone marrow. Nat Cell Biol 2016;18:1078-89.  DOI  PubMed  PMC
               25.      Pavlovic M, Arnal-Estapé A, Rojo F, et al. Enhanced MAF oncogene expression and breast cancer bone metastasis. J Natl Cancer Inst
                   2015;107:djv256.  DOI  PubMed  PMC
               26.      Thomas RJ, Guise TA, Yin JJ, et al. Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology
                   1999;140:4451-8.  DOI  PubMed
               27.      Clements ME, Johnson RW. PREX1 drives spontaneous bone dissemination of ER+ breast cancer cells. Oncogene 2020;39:1318-34.
                   DOI  PubMed  PMC
               28.      Ottewell PD, Wang N, Brown HK, et al. Zoledronic acid has differential antitumor activity in the pre- and postmenopausal bone
                   microenvironment in vivo. Clin Cancer Res 2014;20:2922-32.  DOI  PubMed  PMC
               29.      Bord S, Horner A, Beavan S, Compston J. Estrogen receptors alpha and beta are differentially expressed in developing human bone. J
                   Clin Endocrinol Metab 2001;86:2309-14.  DOI  PubMed
               30.      Braidman IP, Hainey L, Batra G, Selby PL, Saunders PT, Hoyland JA. Localization of estrogen receptor beta protein expression in
                   adult human bone. J Bone Miner Res 2001;16:214-20.  DOI  PubMed
               31.      Rooney AM, van der Meulen MCH. Mouse models to evaluate the role of estrogen receptor α in skeletal maintenance and adaptation.
                   Ann N Y Acad Sci 2017;1410:85-92.  DOI  PubMed
               32.      Manolagas SC, O'Brien CA, Almeida M. The role of estrogen and androgen receptors in bone health and disease. Nat Rev Endocrinol
                   2013;9:699-712.  DOI  PubMed  PMC
               33.      Khosla S, Monroe DG. Regulation of bone metabolism by sex steroids. Cold Spring Harb Perspect Med 2018;8:a031211.  DOI
                   PubMed  PMC
               34.      Cheng JN, Frye JB, Whitman SA, Funk JL. Skeletal impact of 17β-estradiol in T cell-deficient mice: age-dependent bone effects and
                   osteosarcoma formation. Clin Exp Metastasis 2020;37:269-81.  DOI  PubMed  PMC
               35.      Winding B, Misander H, Høegh-andersen P, Brünner N, Tækker Foged N. Estradiol enhances osteolytic lesions in mice inoculated
                   with human estrogen receptor-negative MDA-231 breast cancer cells in vivo. Breast Cancer Res Treat 2003;78:205-16.  DOI  PubMed
               36.      Cohen DJ, Patel V, Verma A, Boyan BD, Schwartz Z. Effect of 17β-estradiol on estrogen receptor negative breast cancer cells in an
                   osteolytic mouse model. Steroids 2019;142:28-33.  DOI  PubMed
               37.      Ottewell PD, Wang N, Brown HK, et al. OPG-Fc inhibits ovariectomy-induced growth of disseminated breast cancer cells in bone. Int
                   J Cancer 2015;137:968-77.  DOI  PubMed
               38.      Wang W, Belosay A, Yang X, et al. Effects of letrozole on breast cancer micro-metastatic tumor growth in bone and lung in mice
                   inoculated with murine 4T1 cells. Clin Exp Metastasis 2016;33:475-85.  DOI  PubMed
               39.      Price TT, Burness ML, Sivan A, et al. Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their
                   transit to and from bone. Sci Transl Med 2016;8:340ra73.  DOI  PubMed
               40.      Wang H, Yu C, Gao X, et al. The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer
                   Cell 2015;27:193-210.  DOI  PubMed  PMC
               41.      Wright LE, Frye JB, Lukefahr AL, et al. Curcuminoids block TGF-β signaling in human breast cancer cells and limit osteolysis in a
                   murine model of breast cancer bone metastasis. J Nat Prod 2013;76:316-21.  DOI  PubMed  PMC
               42.      Guise TA, Yin JJ, Taylor SD, et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human
                   breast cancer-mediated osteolysis. J Clin Invest 1996;98:1544-9.  DOI  PubMed  PMC
               43.      Kunihiro AG, Brickey JA, Frye JB, Luis PB, Schneider C, Funk JL. Curcumin, but not curcumin-glucuronide, inhibits Smad signaling
   16   17   18   19   20   21   22   23   24   25   26