Page 95 - Read Online
P. 95

Goyal et al. J Cancer Metastasis Treat 2021;7:18  https://dx.doi.org/10.20517/2394-4722.2020.143  Page 11 of 12

               26.      He X, Feng S. Role of metabolic enzymes P450 (CYP) on activating procarcinogen and their polymorphisms on the risk of cancers.
                   Curr Drug Metab 2015;16:850-63.  DOI  PubMed
               27.      Hrycay EG, Bandiera SM. Involvement of cytochrome P450 in reactive oxygen species formation and cancer. Cytochrome P450
                   Function and Pharmacological Roles in Inflammation and Cancer. Elsevier; 2015. pp. 35-84.  DOI  PubMed
               28.      Shimada T, Oda Y, Gillam EM, Guengerich FP, Inoue K. Metabolic activation of polycyclic aromatic hydrocarbons and other
                   procarcinogens by cytochromes P450 1A1 and P450 1B1 allelic variants and other human cytochromes P450 in Salmonella
                   typhimurium NM2009. Drug Metab Dispos 2001;29:1176-82.  PubMed
               29.      Williams DE, Shigenaga MK, Castagnoli N Jr. The role of cytochromes P-450 and flavin-containing monooxygenase in the
                   metabolism of (S)-nicotine by rabbit lung. Drug Metab Dispos 1990;18:418-28.  PubMed
               30.      Bao Z, He XY, Ding X, Prabhu S, Hong JY. Metabolism of nicotine and cotinine by human cytochrome P450 2A13. Drug Metab
                   Dispos 2005;33:258-61.  DOI  PubMed
               31.      Peterson LA, Trevor A, Castagnoli N Jr. Stereochemical studies on the cytochrome P-450 catalyzed oxidation of (S)-nicotine to the
                   (S)-nicotine delta 1'(5')-iminium species. J Med Chem 1987;30:249-54.  DOI  PubMed
               32.      Gorrod JW, Hibberd AR. The metabolism of nicotine-delta 1'(5')-iminium ion, in vivo and in vitro. Eur J Drug Metab Pharmacokinet
                   1982;7:293-8.  DOI  PubMed
               33.      Centers  for  Disease  Control  and  Prevention  -  Data  and  Statistics,  F.  F.  a.  F.  S.,  Smoking  &  Tobacco  Use.
                   https://www.cdc.gov/tobacco/data_statistics/fact_sheets/fast_facts/index.htm.
               34.      Baker TB, Piper ME, Stein JH, et al. Effects of nicotine patch vs Varenicline vs combination nicotine replacement therapy on smoking
                   cessation at 26 weeks: A randomized clinical trial. JAMA 2016;315:371-9.  DOI  PubMed  PMC
               35.      N  a t i o n a l    I n s t i t u t e    o n    D  r u g    A  b u s e .    T o b a c c o ,    N  . ,    a n d    E C i g a r e t t e s ,    I s    N  i c o t i n e    A  d d i c t i v e ?
                   https://www.drugabuse.gov/publications/research-reports/tobacco/nicotine-addictive. [Last accessed on 1 Dec 2020].
               36.      Mcmorrow MJ, Foxx RM. Nicotine's role in smoking: An analysis of nicotine regulation. Psychological Bulletin 1983;93:302-27.
                   PubMed
               37.      Sellers EM, Kaplan HL, Tyndale RF. Inhibition of cytochrome P450 2A6 increases nicotine's oral bioavailability and decreases
                   smoking. Clin Pharmacol Ther 2000;68:35-43.  DOI  PubMed
               38.      Sellers  EM,  Ramamoorthy  Y,  Zeman  MV,  Djordjevic  MV,  Tyndale  RF.  The  effect  of  methoxsalen  on  nicotine  and  4-
                   (methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism in vivo. Nicotine Tob Res 2003;5:891-9.  DOI  PubMed
               39.      Pianezza ML, Sellers EM, Tyndale RF. Nicotine metabolism defect reduces smoking. Nature 1998;393:750.  DOI  PubMed
               40.      Rao Y, Hoffmann E, Zia M, et al. Duplications and defects in the CYP2A6 gene: identification, genotyping, and in vivo effects on
                   smoking. Mol Pharmacol 2000;58:747-55.  DOI  PubMed
               41.      Ezzeldin N, El-Lebedy D, Darwish A, et al. Association of genetic polymorphisms CYP2A6*2 rs1801272 and CYP2A6*9 rs28399433
                   with tobacco-induced lung Cancer: case-control study in an Egyptian population. BMC Cancer 2018;18:525.  DOI  PubMed  PMC
               42.      Foroozesh M, Jiang Q, Sridhar J, et al. Design, synthesis, and evaluation of a family of propargyl pyridinyl ethers as potential
                   cytochrome P450 inhibitors. J Undergrad Chem Res 2013;12:91-4.  PubMed  PMC
               43.      Shimada T, Takenaka S, Kakimoto K, et al. Structure-function studies of naphthalene, phenanthrene, biphenyl, and their derivatives in
                   interaction with and oxidation by cytochromes P450 2A13 and 2A6. Chem Res Toxicol 2016;29:1029-40.  DOI  PubMed  PMC
               44.      Shimada T, Takenaka S, Murayama N, et al. Oxidation of pyrene, 1-hydroxypyrene, 1-nitropyrene and 1-acetylpyrene by human
                   cytochrome P450 2A13. Xenobiotica 2016;46:211-24.  DOI  PubMed  PMC
               45.      Kramlinger VM, von Weymarn LB, Murphy SE. Inhibition and inactivation of cytochrome P450 2A6 and cytochrome P450 2A13 by
                   menthofuran, β-nicotyrine and menthol. Chem Biol Interact 2012;197:87-92.  DOI  PubMed  PMC
               46.      Prasopthum A, Pouyfung P, Sarapusit S, Srisook E, Rongnoparut P. Inhibition effects of Vernonia cinerea active compounds against
                   cytochrome P450 2A6 and human monoamine oxidases, possible targets for reduction of tobacco dependence. Drug Metab
                   Pharmacokinet 2015;30:174-81.  DOI  PubMed
               47.      Nakajima M, Itoh M, Yamanaka H, et al. Isoflavones inhibit nicotine C-oxidation catalyzed by human CYP2A6. J Clin Pharmacol
                   2006;46:337-44.  DOI  PubMed
               48.      Gilardi G, Meharenna YT, Tsotsou GE, Sadeghi SJ, Fairhead M, Giannini S. Molecular Lego: design of molecular assemblies of P450
                   enzymes for nanobiotechnology. Biosensors and Bioelectronics 2002;17:133-45.  DOI  PubMed
               49.      Dodhia VR, Fantuzzi A, Gilardi G. Engineering human cytochrome P450 enzymes into catalytically self-sufficient chimeras using
                   molecular Lego. J Biol Inorg Chem 2006;11:903-16.  DOI  PubMed
               50.      Castrignanò S, Ortolani A, Sadeghi SJ, Di Nardo G, Allegra P, Gilardi G. Electrochemical detection of human cytochrome P450 2A6
                   inhibition: a step toward reducing dependence on smoking. Anal Chem 2014;86:2760-6.  DOI  PubMed
               51.      Denton TT, Srivastava P, Xia Z, et al. Identification of the 4-position of 3-alkynyl and 3-heteroaromatic substituted pyridine
                   methanamines as a key modification site eliciting increased potency and enhanced selectivity for cytochrome P-450 2A6 inhibition. J
                   Med Chem 2018;61:7065-86.  DOI  PubMed  PMC
               52.      Denton TT, Zhang X, Cashman JR. Nicotine-related alkaloids and metabolites as inhibitors of human cytochrome P-450 2A6. Biochem
                   Pharmacol 2004;67:751-6.  DOI  PubMed
               53.      Denton TT, Zhang X, Cashman JR. 5-substituted, 6-substituted, and unsubstituted 3-heteroaromatic pyridine analogues of nicotine as
                   selective inhibitors of cytochrome P-450 2A6. J Med Chem 2005;48:224-39.  DOI  PubMed
               54.      Yano JK, Denton TT, Cerny MA, Zhang X, Johnson EF, Cashman JR. Synthetic inhibitors of cytochrome P-450 2A6: inhibitory
                   activity, difference spectra, mechanism of inhibition, and protein cocrystallization. J Med Chem 2006;49:6987-7001.  DOI  PubMed
               55.      Liu J, Taylor SF, Dupart PS, et al. Pyranoflavones: a group of small-molecule probes for exploring the active site cavities of
   90   91   92   93   94   95   96   97   98   99   100