Page 65 - Read Online
P. 65

Ballarò et al. J Cancer Metastasis Treat 2019;5:61  I  http://dx.doi.org/10.20517/2394-4722.2019.003                           Page 9 of 9

               48.   Lin J, Wu H, Tarr P, Zhang C, Wu Z, et al. Transcriptional co-activator PGC-1 a drives the formation of slow-twitch muscle fibre.
                   Nature 2002;418:797-801.
               49.   Dinulovic I, Furrer R, Beer M, Ferry A, Cardel B, et al. Muscle PGC-1 α modulates satellite cell number and proliferation by
                   remodeling the stem cell niche. Skelet Muscle 2016;6:39.
               50.   Cannavino J, Brocca L, Sandri M, Bottinelli R, Pellegrino MA. PGC1- α over-expression prevents metabolic alterations and soleus
                   muscle atrophy in hindlimb unloaded mice. J Physiol 2014;20:4575-89.
               51.   Kang C, Ji LL. Role of PGC-1α in muscle function and aging. J Sport Heal Sci 2013;2:81-6.
               52.   Sandri M, Lin J, Handschin C, Yang W, Arany ZP, et al. PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3
                   action and atrophy-specific gene transcription. Proc Natl Acad Sci U S A 2006;103:16260-5.
               53.   Gill JF, Santos G, Schnyder S, Handschin C. PGC-1α affects aging-related changes in muscle and motor function by modulating
                   specific exercise-mediated changes in old mice. Aging Cell 2018;17:1-13.
               54.   van der Ende M, Grefte S, Plas R, Meijerink J, Witkamp RF, et al. Mitochondrial dynamics in cancer-induced cachexia. Biochim
                   Biophys Acta - Rev Cancer 2018;1870:137-50.
               55.   Wang X, Pickrell AM, Zimmers TA, Moraes CT. Increase in muscle mitochondrial biogenesis does not prevent muscle loss but
                   increased tumor size in a mouse model of acute cancer-induced cachexia. PLoS One 2012;7:2-7.
               56.   Vaughan RA, Mermier CM, Bisoffi M, Trujillo KA, Conn CA. Dietary stimulators of the PGC-1 superfamily and mitochondrial
                   biosynthesis in skeletal muscle. A mini-review. J Physiol Biochem 2014;70:271-84.
               57.   Wang L, Di L, Noguchi CT. Erythropoietin, a novel versatile player regulating energy metabolism beyond the erythroid system. Int J
                   Biol Sci 2014;10:921-39.
               58.   Cui L, Guo J, Zhang Q, Yin J, Li J, et al. Erythropoietin activates SIRT1 to protect human cardiomyocytes against doxorubicin-
                   induced mitochondrial dysfunction and toxicity. Toxicol Lett 2017;275:28-38.
               59.   Wang L, Jia Y, Rogers H, Suzuki N, Gassmann M, et al. Erythropoietin contributes to slow oxidative muscle fiber specification via
                   PGC-1α and AMPK activation. Int J Biochem Cell Biol 2014;45:1155-64.
               60.   Plenge U, Belhage B, Guadalupe-Grau A, Andersen PR, Lundby C, et al. Erythropoietin treatment enhances muscle mitochondria
                   capacity in humans. Front Physiol 2012;3:1-5.
               61.   Lopaschuk DG, Barr R, Panakkezhum DT, Dyck RJ. Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to
                   a stimulation of glucose oxidation secondary to inhibition of long-chain 3-ketoacyl coenzyme a thiolase. Circ Res 2003;93:e33-7.
               62.   Dyck JRB. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and
                   stimulating glucose oxidation. Circ Res 2004;94:e78-84.
               63.   Guarini G, Huqi A, Morrone D, Francesca P, Capozza G, et al. Pharmacotherapy Trimetazidine and Other Metabolic Modifiers. Eur
                   Cardiol 2018;13:104-11.
               64.   Vitale C, Marazzi G, Pelliccia F, Volterrani M, Cerquetani E, et al. Trimetazidine improves exercise performance in patients with
                   peripheral arterial disease. Pharmacol Res 2011;63:278-83.
               65.   Kuzmicic J, Parra V, Verdejo HE, López-Crisosto C, Chiong M, et al. Trimetazidine prevents palmitate-induced mitochondrial fission
                   and dysfunction in cultured cardiomyocytes. Biochem Pharmacol 2014;91:323-36.
               66.   Ferraro E, Giammarioli AM, Caldarola S, Lista P, Feraco A, et al. The metabolic modulator trimetazidine triggers autophagy and
                   counteracts stress-induced atrophy in skeletal muscle myotubes. FEBS J 2013;280:5094-108.
               67.   Ferraro E, Pin F, Gorini S, Pontecorvo L, Ferri A, et al. Improvement of skeletal muscle performance in ageing by the metabolic
                   modulator Trimetazidine. J Cachexia Sarcopenia Muscle 2016;7:449-57.
               68.   Molinari F, Pin F, Gorini S, Chiandotto S, Pontecorvo L, et al. The mitochondrial metabolic reprogramming agent trimetazidine as an
                   ‘exercise mimetic’ in cachectic C26-bearing mice. J Cachexia Sarcopenia Muscle 2017;8:954-73.
               69.   Blaauw B, Schiaffino S, Reggiani C. Mechanisms modulating skeletal muscle phenotype. Compr Physiol 2013;3:1645-87.
               70.   Bazgir B, Fathi R, Valojerdi MR, Mozdziak P, Asgari A. Satellite cells contribution to exercise mediated muscle hypertrophy and
                   repair. Cell J 2016;18:473-84.
               71.   Gatta L, Vitiello L, Gorini S, Chiandotto S, Costelli P, et al. Modulating the metabolism by trimetazidine enhances myoblast
                   differentiation and promotes myogenesis in cachectic tumor-bearing c26 mice. Oncotarget 2017;8:113938-56.
               72.   He WA, Berardi E, Cardillo VM, Acharyya S, Aulino P, et al. NF-κB-mediated Pax7 dysregulation in the muscle microenvironment
                   promotes cancer cachexia. J Clin Invest 2013;123:4821-35.
               73.   Penna F, Costamagna D, Fanzani A, Bonelli G, Baccino FM, et al. Muscle wasting and impaired Myogenesis in tumor bearing mice
                   are prevented by ERK inhibition. PLoS One 2010;5:e13604.
   60   61   62   63   64   65   66   67   68   69   70