Page 65 - Read Online
P. 65
Ballarò et al. J Cancer Metastasis Treat 2019;5:61 I http://dx.doi.org/10.20517/2394-4722.2019.003 Page 9 of 9
48. Lin J, Wu H, Tarr P, Zhang C, Wu Z, et al. Transcriptional co-activator PGC-1 a drives the formation of slow-twitch muscle fibre.
Nature 2002;418:797-801.
49. Dinulovic I, Furrer R, Beer M, Ferry A, Cardel B, et al. Muscle PGC-1 α modulates satellite cell number and proliferation by
remodeling the stem cell niche. Skelet Muscle 2016;6:39.
50. Cannavino J, Brocca L, Sandri M, Bottinelli R, Pellegrino MA. PGC1- α over-expression prevents metabolic alterations and soleus
muscle atrophy in hindlimb unloaded mice. J Physiol 2014;20:4575-89.
51. Kang C, Ji LL. Role of PGC-1α in muscle function and aging. J Sport Heal Sci 2013;2:81-6.
52. Sandri M, Lin J, Handschin C, Yang W, Arany ZP, et al. PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3
action and atrophy-specific gene transcription. Proc Natl Acad Sci U S A 2006;103:16260-5.
53. Gill JF, Santos G, Schnyder S, Handschin C. PGC-1α affects aging-related changes in muscle and motor function by modulating
specific exercise-mediated changes in old mice. Aging Cell 2018;17:1-13.
54. van der Ende M, Grefte S, Plas R, Meijerink J, Witkamp RF, et al. Mitochondrial dynamics in cancer-induced cachexia. Biochim
Biophys Acta - Rev Cancer 2018;1870:137-50.
55. Wang X, Pickrell AM, Zimmers TA, Moraes CT. Increase in muscle mitochondrial biogenesis does not prevent muscle loss but
increased tumor size in a mouse model of acute cancer-induced cachexia. PLoS One 2012;7:2-7.
56. Vaughan RA, Mermier CM, Bisoffi M, Trujillo KA, Conn CA. Dietary stimulators of the PGC-1 superfamily and mitochondrial
biosynthesis in skeletal muscle. A mini-review. J Physiol Biochem 2014;70:271-84.
57. Wang L, Di L, Noguchi CT. Erythropoietin, a novel versatile player regulating energy metabolism beyond the erythroid system. Int J
Biol Sci 2014;10:921-39.
58. Cui L, Guo J, Zhang Q, Yin J, Li J, et al. Erythropoietin activates SIRT1 to protect human cardiomyocytes against doxorubicin-
induced mitochondrial dysfunction and toxicity. Toxicol Lett 2017;275:28-38.
59. Wang L, Jia Y, Rogers H, Suzuki N, Gassmann M, et al. Erythropoietin contributes to slow oxidative muscle fiber specification via
PGC-1α and AMPK activation. Int J Biochem Cell Biol 2014;45:1155-64.
60. Plenge U, Belhage B, Guadalupe-Grau A, Andersen PR, Lundby C, et al. Erythropoietin treatment enhances muscle mitochondria
capacity in humans. Front Physiol 2012;3:1-5.
61. Lopaschuk DG, Barr R, Panakkezhum DT, Dyck RJ. Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to
a stimulation of glucose oxidation secondary to inhibition of long-chain 3-ketoacyl coenzyme a thiolase. Circ Res 2003;93:e33-7.
62. Dyck JRB. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and
stimulating glucose oxidation. Circ Res 2004;94:e78-84.
63. Guarini G, Huqi A, Morrone D, Francesca P, Capozza G, et al. Pharmacotherapy Trimetazidine and Other Metabolic Modifiers. Eur
Cardiol 2018;13:104-11.
64. Vitale C, Marazzi G, Pelliccia F, Volterrani M, Cerquetani E, et al. Trimetazidine improves exercise performance in patients with
peripheral arterial disease. Pharmacol Res 2011;63:278-83.
65. Kuzmicic J, Parra V, Verdejo HE, López-Crisosto C, Chiong M, et al. Trimetazidine prevents palmitate-induced mitochondrial fission
and dysfunction in cultured cardiomyocytes. Biochem Pharmacol 2014;91:323-36.
66. Ferraro E, Giammarioli AM, Caldarola S, Lista P, Feraco A, et al. The metabolic modulator trimetazidine triggers autophagy and
counteracts stress-induced atrophy in skeletal muscle myotubes. FEBS J 2013;280:5094-108.
67. Ferraro E, Pin F, Gorini S, Pontecorvo L, Ferri A, et al. Improvement of skeletal muscle performance in ageing by the metabolic
modulator Trimetazidine. J Cachexia Sarcopenia Muscle 2016;7:449-57.
68. Molinari F, Pin F, Gorini S, Chiandotto S, Pontecorvo L, et al. The mitochondrial metabolic reprogramming agent trimetazidine as an
‘exercise mimetic’ in cachectic C26-bearing mice. J Cachexia Sarcopenia Muscle 2017;8:954-73.
69. Blaauw B, Schiaffino S, Reggiani C. Mechanisms modulating skeletal muscle phenotype. Compr Physiol 2013;3:1645-87.
70. Bazgir B, Fathi R, Valojerdi MR, Mozdziak P, Asgari A. Satellite cells contribution to exercise mediated muscle hypertrophy and
repair. Cell J 2016;18:473-84.
71. Gatta L, Vitiello L, Gorini S, Chiandotto S, Costelli P, et al. Modulating the metabolism by trimetazidine enhances myoblast
differentiation and promotes myogenesis in cachectic tumor-bearing c26 mice. Oncotarget 2017;8:113938-56.
72. He WA, Berardi E, Cardillo VM, Acharyya S, Aulino P, et al. NF-κB-mediated Pax7 dysregulation in the muscle microenvironment
promotes cancer cachexia. J Clin Invest 2013;123:4821-35.
73. Penna F, Costamagna D, Fanzani A, Bonelli G, Baccino FM, et al. Muscle wasting and impaired Myogenesis in tumor bearing mice
are prevented by ERK inhibition. PLoS One 2010;5:e13604.