Page 352 - Read Online
P. 352

Smigiel et al. J Cancer Metastasis Treat 2019;5:47  I  http://dx.doi.org/10.20517/2394-4722.2019.26                         Page 17 of 20

               150.  Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, et al. Breast cancer stem cells are regulated by mesenchymal stem cells through
                   cytokine networks. Cancer Res 2011;71:614-24.
               151.  Sullivan NJ, Sasser AK, Axel AE, Vesuna F, Raman V, et al. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in
                   human breast cancer cells. Oncogene 2009;28:2940-7.
               152.  Vlaicu P, Mertins P, Mayr T, Widschwendter P, Ataseven B, et al. Monocytes/macrophages support mammary tumor invasivity by co-
                   secreting lineage-specific EGFR ligands and a STAT3 activator. BMC Cancer 2013;13:197.
               153.  Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol
                   2013;15:807-17.
               154.  Zhang J, Tian XJ, Zhang H, Teng Y, Li R, et al. TGF-beta-induced epithelial-to-mesenchymal transition proceeds through stepwise
                   activation of multiple feedback loops. Sci Signal 2014;7:ra91.
               155.  West NR, Murray JI, Watson PH. Oncostatin-M promotes phenotypic changes  associated with mesenchymal and stem cell-like
                   differentiation in breast cancer. Oncogene 2014;33:1485-94.
               156.  Lu H, Clauser KR, Tam WL, Frose J, Ye X, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes
                   and macrophages. Nat Cell Biol 2014;16:1105-17.
               157.  Yu Y, Xiao CH, Tan LD, Wang QS, Li XQ, et al. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer
                   cells through paracrine TGF-beta signalling. Br J Cancer 2014;110:724-32.
               158.  Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell
                   2015;16:225-38.
               159.  Grosse-Wilde A, Fouquier d'Herouel A, McIntosh E, Ertaylan G, Skupin A, et al. Stemness of the hybrid epithelial/mesenchymal state
                   in breast cancer and its association with poor survival. PLoS One 2015;10:e0126522.
               160.  Shibue T, Weinberg RA. Integrin beta1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated
                   in the lungs. Proc Natl Acad Sci U S A 2009;106:10290-5.
               161.  Dykxhoorn DM, Wu Y, Xie H, Yu F, Lal A, et al. miR-200 enhances mouse breast cancer cell colonization to form distant metastases.
                   PLoS One 2009;4:e7181.
               162.  Ocana OH, Corcoles R, Fabra A, Moreno-Bueno G, Acloque H, et al. Metastatic colonization requires the repression of the epithelial-
                   mesenchymal transition inducer Prrx1. Cancer Cell 2012;22:709-24.
               163.  Del Pozo Martin Y, Park D, Ramachandran A, Ombrato L, Calvo F, et al. Mesenchymal Cancer Cell-Stroma Crosstalk Promotes Niche
                   Activation, Epithelial Reversion, and Metastatic Colonization. Cell Rep 2015;13:2456-69.
               164.  Ge Y, Fuchs E. Stretching the limits: from homeostasis to stem cell plasticity in wound healing and cancer. Nat Rev Genet 2018;19:311-25.
               165.  Thiery JP, Chopin D. Cancer and Metastasis Reviews 1999;18:31-42.
               166.  Varga J, Greten FR. Cell plasticity in epithelial homeostasis and tumorigenesis. Nat Cell Biol 2017;19:1133-41.
               167.  Hay ED. An overview of epithelio-mesenchymal transformation. Acta Anat (Basel) 1995;154:8-20.
               168.  Shook D, Keller R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mechanisms of
                   Development 2003;120:1351-83.
               169.  Levayer R, Lecuit T. Breaking down EMT. Nat Cell Biol 2008;10:757-9.
               170.  Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006;7:131-42.
               171.  Rodilla V, Fre S. Cellular plasticity of mammary epithelial cells underlies heterogeneity of breast cancer. Biomedicines 2018;6.
               172.  Van Keymeulen A, Lee MY, Ousset M, Brohee S, Rorive S, et al. Reactivation of multipotency by oncogenic PIK3CA induces breast
                   tumour heterogeneity. Nature 2015;525:119-23.
               173.  Koren S, Reavie L, Couto JP, De Silva D, Stadler MB, et al. PIK3CA(H1047R) induces multipotency and multi-lineage mammary
                   tumours. Nature 2015;525:114-8.
               174.  Celia-Terrassa T. Mammary stem cells and breast cancer stem cells: molecular connections and clinical implications. Biomedicines
                   2018;6.
               175.  Gjorevski N, Nelson CM. Integrated morphodynamic signalling of the mammary gland. Nature Reviews Molecular Cell Biology
                   2011;12:581-93.
               176.  Godde NJ, Galea RC, Elsum IA, Humbert PO. Cell polarity in motion: redefining mammary tissue organization through EMT and cell
                   polarity transitions. J Mammary Gland Biol Neoplasia 2010;15:149-68.
               177.  Merrell AJ, Stanger BZ. Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol
                   2016;17:413-25.
               178.  Ye X, Weinberg RA. Epithelial–Mesenchymal Plasticity: A Central Regulator of Cancer Progression. Trends in Cell Biology
                   2015;25:675-86.
               179.  Visvader JE. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev 2009;23:2563-77.
               180.  Mun GI, Boo YC. Identification of CD44 as a senescence-induced cell adhesion gene responsible for the enhanced monocyte recruitment
                   to senescent endothelial cells. Am J Physiol Heart Circ Physiol 2010;298:H2102-11.
               181.  Honeth G, Bendahl PO, Ringner M, Saal LH, Gruvberger-Saal SK, et al. The CD44+/CD24- phenotype is enriched in basal-like breast
                   tumors. Breast Cancer Res 2008;10:R53.
               182.  Williams K, Motiani K, Giridhar PV, Kasper S. CD44 integrates signaling in normal stem cell, cancer stem cell and (pre)metastatic
                   niches. Exp Biol Med (Maywood) 2013;238:324-38.
               183.  Morath I, Hartmann TN, Orian-Rousseau V. CD44: More than a mere stem cell marker. Int J Biochem Cell Biol 2016;81:166-73.
               184.  Gewirtz DA, Alotaibi M, Yakovlev VA, Povirk LF. Tumor Cell Recovery from Senescence Induced by Radiation with PARP Inhibition.
   347   348   349   350   351   352   353   354   355   356   357