Page 348 - Read Online
P. 348

Smigiel et al. J Cancer Metastasis Treat 2019;5:47  I  http://dx.doi.org/10.20517/2394-4722.2019.26                         Page 13 of 20

               14.  Junk DJ, Bryson BL, Smigiel JM, Parameswaran N, Bartel CA, et al. Oncostatin M promotes cancer cell plasticity through cooperative
                   STAT3-SMAD3 signaling. Oncogene 2017;36:4001-13.
               15.  Li Y, Pan J, Li JL, Lee JH, Tunkey C, et al. Transcriptional changes associated with breast cancer occur as normal human mammary
                   epithelial cells overcome senescence barriers and become immortalized. Mol Cancer 2007;6:7.
               16.  Romanov SR, Kozakiewicz BK, Holst CR, Stampfer MR, Haupt LM, et al. Normal human mammary epithelial cells spontaneously
                   escape senescence and acquire genomic changes. Nature 2001;409:633-7.
               17.  Prat A, Adamo B, Cheang MC, Anders CK, Carey LA, et al. Molecular characterization of basal-like and non-basal-like triple-negative
                   breast cancer. Oncologist 2013;18:123-33.
               18.  Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, et al. Molecular portraits of human breast tumours. Nature 2000;406:747-52.
               19.  Nielsen TO, Parker JS, Leung S, Voduc D, Ebbert M, et al. A comparison of PAM50 intrinsic subtyping with immunohistochemistry
                   and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res 2010;16:5222-32.
               20.  Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for
                   metastatic breast cancer that overexpresses HER2. N Engl J Med 2001;344:783-92.
               21.  Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N
                   Engl J Med 2006;355:2733-43.
               22.  Baselga J, Cortes J, Kim SB, Im SA, Hegg R, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J
                   Med 2012;366:109-19.
               23.  Diéras V, Miles D, Verma S, Pegram M, Welslau M, et al. Trastuzumab emtansine versus capecitabine plus lapatinib in patients with
                   previously treated HER2-positive advanced breast cancer (EMILIA): a descriptive analysis of final overall survival results from a
                   randomised, open-label, phase 3 trial. Lancet Oncol 2017;18:732-42.
               24.  Qiu J, Xue X, Hu C, Xu H, Kou D, et al. Comparison of clinicopathological features and prognosis in triple-negative and non-triple
                   negative breast cancer. J Cancer 2016;7:167-73.
               25.  Alizadeh AA, Aranda V, Bardelli A, Blanpain C, Bock C, et al. Toward understanding and exploiting tumor heterogeneity. Nat Med
                   2015;21:846-53.
               26.  Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 2013;501:346-54.
               27.  Morris LG, Riaz N, Desrichard A, Senbabaoglu Y, Hakimi AA, et al. Pan-cancer analysis of intratumor heterogeneity as a prognostic
                   determinant of survival. Oncotarget 2016;7:10051-63.
               28.  Erez N, Truitt M, Olson P, Arron ST, Hanahan D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-
                   promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 2010;17:135-47.
               29.  Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 2013;14:1014-22.
               30.  Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous
                   disease. Nat Rev Clin Oncol 2016;13:674-90.
               31.  Sikov WM, Barry WT, Hoadley KA, Pitcher BN, Singh B, et al. Abstract S4-05: Impact of intrinsic subtype by PAM50 and other
                   gene signatures on pathologic complete response (pCR) rates in triple-negative breast cancer (TNBC) after neoadjuvant chemotherapy
                   (NACT) +/- carboplatin (Cb) or bevacizumab (Bev): CALGB 40603/150709 (Allianc. Cancer Research 2015;75:S4-05-S4-05.
               32.  Sabatier R, Finetti P, Mamessier E, Adelaide J, Chaffanet M, et al. Prognostic and predictive value of PDL1 expression in breast cancer.
                   Oncotarget 2015;6:5449-64.
               33.  Callari  M,  Cappelletti  V,  D'Aiuto  F,  Musella  V,  Lembo  A,  et  al.  Subtype-Specific  Metagene-Based  Prediction  of  Outcome  after
                   Neoadjuvant and Adjuvant Treatment in Breast Cancer. Clin Cancer Res 2016;22:337-45.
               34.  Gu-Trantien C, Loi S, Garaud S, Equeter C, Libin M, et al. CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J
                   Clin Invest 2013;123:2873-92.
               35.  Denkert  C,  von  Minckwitz  G,  Brase  JC,  Sinn  BV,  Gade  S,  et  al.  Tumor-infiltrating  lymphocytes  and  response  to  neoadjuvant
                   chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast
                   cancers. J Clin Oncol 2015;33:983-91.
               36.  Chung W, Eum HH, Lee HO, Lee KM, Lee HB, et al. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in
                   primary breast cancer. Nat Commun 2017;8:15081.
               37.  Yaswen P, Stampfer MR. Molecular changes accompanying senescence and immortalization of cultured human mammary epithelial
                   cells. The International Journal of Biochemistry & Cell Biology 2002;34:1382-94.
               38.  Novak P, Jensen TJ, Garbe JC, Stampfer MR, Futscher BW. Stepwise DNA methylation changes are linked to escape from defined
                   proliferation barriers and mammary epithelial cell immortalization. Cancer Res 2009;69:5251-8.
               39.  Garbe JC, Vrba L, Sputova K, Fuchs L, Novak P, et al. Immortalization of normal human mammary epithelial cells in two steps by direct
                   targeting of senescence barriers does not require gross genomic alterations. Cell Cycle 2014;13:3423-35.
               40.  Saab R. Senescence and pre-malignancy: how do tumors progress? Semin Cancer Biol 2011;21:385-91.
               41.  Hornsby PJ. Senescence as an anticancer mechanism. J Clin Oncol 2007;25:1852-7.
               42.  He S, Sharpless NE. Senescence in Health and Disease. Cell 2017;169:1000-11.
               43.  Schmitt CA. Senescence, apoptosis and therapy--cutting the lifelines of cancer. Nat Rev Cancer 2003;3:286-95.
               44.  Ito Y, Hoare M, Narita M. Spatial and temporal control of senescence. Trends Cell Biol 2017;27:820-32.
               45.  Polyak K. Breast cancer: origins and evolution. J Clin Invest 2007;117:3155-63.
               46.  Shah SP, Roth A, Goya R, Oloumi A, Ha G, et al. The clonal and mutational evolution spectrum of primary triple-negative breast
                   cancers. Nature 2012;486:395-9.
               47.  Rajendran BK, Deng CX. Characterization of potential driver mutations involved in human breast cancer by computational approaches.
   343   344   345   346   347   348   349   350   351   352   353