Page 350 - Read Online
P. 350

Smigiel et al. J Cancer Metastasis Treat 2019;5:47  I  http://dx.doi.org/10.20517/2394-4722.2019.26                         Page 15 of 20

               86.  Laberge RM, Awad P, Campisi J, Desprez PY. Epithelial-mesenchymal transition induced by senescent fibroblasts. Cancer Microenviron
                   2012;5:39-44.
               87.  Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression.
                   Annu Rev Pathol 2010;5:99-118.
               88.  Pribluda A, Elyada E, Wiener Z, Hamza H, Goldstein RE, et al. A senescence-inflammatory switch from cancer-inhibitory to cancer-
                   promoting mechanism. Cancer Cell 2013;24:242-56.
               89.  Hoare M, Narita M. Transmitting senescence to the cell neighbourhood. Nat Cell Biol 2013;15:887-9.
               90.  Cahu J, Bustany S, Sola B. Senescence-associated secretory phenotype favors the emergence of cancer stem-like cells. Cell Death Dis
                   2012;3:e446.
               91.  Ritschka B, Storer M, Mas A, Heinzmann F, Ortells MC, et al. The senescence-associated secretory phenotype induces cellular plasticity
                   and tissue regeneration. Genes Dev 2017;31:172-83.
               92.  Castro-Vega LJ, Jouravleva K, Ortiz-Montero P, Liu WY, Galeano JL, et al. The senescent microenvironment promotes the emergence
                   of heterogeneous cancer stem-like cells. Carcinogenesis 2015;36:1180-92.
               93.  Mosteiro L, Pantoja C, Alcazar N, Marion RM, Chondronasiou D, et al. Tissue damage and senescence provide critical signals for
                   cellular reprogramming in vivo. Science 2016;354.
               94.  Ortiz-Montero P, Londono-Vallejo A, Vernot JP. Senescence-associated IL-6 and IL-8 cytokines induce a self- and cross-reinforced
                   senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line. Cell Commun Signal
                   2017;15:17.
               95.  Canino C, Mori F, Cambria A, Diamantini A, Germoni S, et al. SASP mediates chemoresistance and tumor-initiating-activity of
                   mesothelioma cells. Oncogene 2012;31:3148-63.
               96.  Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009;139:871-90.
               97.  Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature
                   1998;392:190-3.
               98.  Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, et al. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional
                   pathways. Cancer Res 2008;68:3645-54.
               99.  Petrova YI, Schecterson L, Gumbiner BM. Roles for E-cadherin cell surface regulation in cancer. Mol Biol Cell 2016;27:3233-44.
               100. Bruner HC, Derksen PWB. Loss of e-cadherin-dependent cell-cell adhesion and the development and progression of cancer. Cold Spring
                   Harb Perspect Biol 2018;10.
               101.  Moreno-Bueno G, Portillo F, Cano A. Transcriptional regulation of cell polarity in EMT and cancer. Oncogene 2008;27:6958-69.
               102.  Trimboli AJ, Fukino K, de Bruin A, Wei G, Shen L, et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer.
                   Cancer Res 2008;68:937-45.
               103.  Zhao Z, Zhu X, Cui K, Mancuso J, Federley R, et al. In Vivo Visualization and Characterization of Epithelial-Mesenchymal Transition
                   in Breast Tumors. Cancer Res 2016;76:2094-104.
               104.  Beerling E, Seinstra D, de Wit E, Kester L, van der Velden D, et al. Plasticity between Epithelial and Mesenchymal States Unlinks EMT
                   from Metastasis-Enhancing Stem Cell Capacity. Cell Rep 2016;14:2281-8.
               105.  Zheng XF, Carstens JL, Kim J, Scheible M, Kaye J, et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces
                   chemoresistance in pancreatic cancer. Nature 2015;527:525.
               106.  Fischer KR, Durrans A, Lee S, Sheng J, Li F, et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but
                   contributes to chemoresistance. Nature 2015;527:472-6.
               107.  Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, et al. The transcription factor snail controls epithelial-mesenchymal
                   transitions by repressing E-cadherin expression. Nat Cell Biol 2000;2:76-83.
               108.  Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, et al. The two-handed E box binding zinc finger protein SIP1
                   downregulates E-cadherin and induces invasion. Mol Cell 2001;7:1267-78.
               109.  Bolos V. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison
                   with Snail and E47 repressors. Journal of Cell Science 2002;116:499-511.
               110.  Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, et al. Twist, a master regulator of morphogenesis, plays an essential role in
                   tumor metastasis. Cell 2004;117:927-39.
               111.  Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat
                   Rev Cancer 2007;7:415-28.
               112.  Ye X, Tam WL, Shibue T, Kaygusuz Y, Reinhardt F, et al. Distinct EMT programs control normal mammary stem cells and tumour-
                   initiating cells. Nature 2015;525:256-60.
               113.  Ansieau S, Morel AP, Hinkal G, Bastid J, Puisieux A. TWISTing an embryonic transcription factor into an oncoprotein. Oncogene
                   2010;29:3173-84.
               114.  De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 2013;13:97-110.
               115.  Blanco MJ, Moreno-Bueno G, Sarrio D, Locascio A, Cano A, et al. Correlation of Snail expression with histological grade and lymph
                   node status in breast carcinomas. Oncogene 2002;21:3241-6.
               116.  Bonnomet A, Syne L, Brysse A, Feyereisen E, Thompson EW, et al. A dynamic in vivo model of epithelial-to-mesenchymal transitions
                   in circulating tumor cells and metastases of breast cancer. Oncogene 2012;31:3741-53.
               117.  Cheung KJ, Gabrielson E, Werb Z, Ewald AJ. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell
                   2013;155:1639-51.
   345   346   347   348   349   350   351   352   353   354   355