Page 307 - Read Online
P. 307
Robinson et al. J Cancer Metastasis Treat 2019;5:39 I http://dx.doi.org/10.20517/2394-4722.2019.15 Page 7 of 9
7. Xie HY, Shao ZM, Li DQ. Tumor microenvironment: driving forces and potential therapeutic targets for breast cancer metastasis. Chin J
Cancer 2017;36:36.
8. Gerlinger M, McGranahan N, Dewhurst SM, Burrell RA, Tomlinson I, et al. Cancer: evolution within a lifetime. Annu Rev Genet
2014;48:215-36.
9. Klein CA. Parallel progression of primary tumours and metastases. Nat Rev Cancer 2009;9:302-12.
10. Turajlic S, Swanton C. Metastasis as an evolutionary process. Science 2016;352:169-75.
11. Rosen JM, Jordan CT. The increasing complexity of the cancer stem cell paradigm. Science 2009;324:1670-3.
12. Bapat SA. Evolution of cancer stem cells. Semin Cancer Biol 2007;17:204-13.
13. Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, et al. Biological and molecular heterogeneity of breast cancers correlates with
their cancer stem cell content. Cell 2010;140:62-73.
14. Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self- renew, give rise to phenotypically diverse
progeny and survive chemotherapy. Breast Cancer Res 2008;10:R25.
15. Nowell PC. The clonal evolution of tumor cell populations. Science 1976;194:23-8.
16. La Porta CAM, Zapperi S. Complexity in cancer stem cells and tumor evolution: toward precision medicine. Semin Cancer Biol
2017;44:3-9.
17. Poleszczuk J, Hahnfeldt P, Enderling H. Evolution and phenotypic selection of cancer stem cells. PLoS Comput Biol 2015;11:e1004025.
18. Hwang-Verslues WW, Kuo WH, Chang PH, Pan CC, Wang HH, et al. Multiple lineages of human breast cancer stem/progenitor cells
identified by profiling with stem cell markers. PLoS One 2009;4:e8377.
19. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, et al. Stochastic state transitions give rise to phenotypic equilibrium in populations
of cancer cells. Cell 2011;146:633-44.
20. Iliopoulos D, Hirsch HA, Wang G, Struhl K. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem
cancer cells via IL6 secretion. Proc Natl Acad Sci U S A 2011;108:1397-402.
21. Notta F, Mullighan CG, Wang JC, Poeppl A, Doulatov S, et al. Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells.
Nature 2011;469:362-7.
22. Anderson K, Lutz C, van Delft FW, Bateman CM, Guo Y, et al. Genetic variegation of clonal architecture and propagating cells in
leukaemia. Nature 2011;469:356-61.
23. Piccirillo SG, Combi R, Cajola L, Patrizi A, Redaelli S, et al. Distinct pools of cancer stem-like cells coexist within human glioblastomas
and display different tumorigenicity and independent genomic evolution. Oncogene 2009;28:1807-11.
24. Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, et al. Breast cancer cells produce tenascin C as a metastatic niche
component to colonize the lungs. Nat Med 2011;17:867-74.
25. Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, et al. Interactions between cancer stem cells and their niche govern
metastatic colonization. Nature 2011;481:85-9.
26. Jang GB, Kim JY, Cho SD, Park KS, Jung JY, et al. Blockade of Wnt/beta-catenin signaling suppresses breast cancer metastasis by
inhibiting CSC-like phenotype. Sci Rep 2015;5:12465.
27. Xu L, Zhang L, Hu C, Liang S, Fei X, et al. WNT pathway inhibitor pyrvinium pamoate inhibits the self-renewal and metastasis of breast
cancer stem cells. Int J Oncol 2016;48:1175-86.
28. Zhao D, Pan C, Sun J, Gilbert C, Drews-Elger K, et al. VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to
upregulate Myc and Sox2. Oncogene 2015;34:3107-19.
29. Elaimy AL, Guru S, Chang C, Ou J, Amante JJ, et al. VEGF-neuropilin-2 signaling promotes stem-like traits in breast cancer cells by
TAZ-mediated repression of the Rac GAP beta2- chimaerin. Sci Signal 2018;11:eaao6897.
30. Wang Y, Li C, Li Y, Zhu Z. Involvement of breast cancer stem cells in tumor angiogenesis. Oncol Lett 2017;14:8150-5.
31. Liu M, Sakamaki T, Casimiro MC, Willmarth NE, Quong AA, et al. The canonical NF-kappaB pathway governs mammary tumorigenesis
in transgenic mice and tumor stem cell expansion. Cancer Res 2010;70:10464-73.
32. Storci G, Sansone P, Mari S, D’Uva G, Tavolari S, et al. TNFalpha up-regulates SLUG via the NF-kappaB/HIF1alpha axis, which imparts
breast cancer cells with a stem cell-like phenotype. J Cell Physiol 2010;225:682-91.
33. Rinkenbaugh AL, Baldwin AS. The NF-kappaB Pathway and Cancer Stem Cells. Cells 2016;5:E16.
34. Zhou J, Zhang H, Gu P, Bai J, Margolick JB, et al. NF-kappaB pathway inhibitors preferentially inhibit breast cancer stem-like cells.
Breast Cancer Res Treat 2008;111:419-27.
35. Parvani JG, Schiemann WP. Sox4, EMT programs, and the metastatic progression of breast cancers: mastering the masters of EMT.
Breast Cancer Res 2013;15:R72.
36. Taylor MA, Parvani JG, Schiemann WP. The pathophysiology of epithelial-mesenchymal transition induced by transforming growth
factor-beta in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia 2010;15:169-90.
37. Micalizzi DS, Ford HL. Epithelial-mesenchymal transition in development and cancer. Future oncology 2009;5:1129-43.
38. Felipe Lima J, Nofech-Mozes S, Bayani J, Bartlett JM. EMT in Breast Carcinoma-A Review. J Clin Med 2016;5:E65.
39. Luo M, Hou L, Li J, Shao S, Huang S, et al. VEGF/NRP-1axis promotes progression of breast cancer via enhancement of epithelial-
mesenchymal transition and activation of NF-kappaB and beta-catenin. Cancer Lett 2016;373:1-11.
40. Fantozzi A, Gruber DC, Pisarsky L, Heck C, Kunita A, et al. VEGF-mediated angiogenesis links EMT-induced cancer stemness to tumor
initiation. Cancer Res 2014;74:1566-75.
41. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with
stem/progenitor cell properties. Cancer Res 2005;65:5506-11.