Page 91 - Read Online
P. 91

Ho et al. J Cancer Metastasis Treat 2019;5:70  I  http://dx.doi.org/10.20517/2394-4722.2019.25                                Page 19 of 20

               135.  Zhou H, Luo W, Zeng C, Zhang Y, Wang L, et al. PP2A mediates apoptosis or autophagic cell death in multiple myeloma cell lines.
                   Oncotarget 2017;8:80770-89.
               136.  Chen S, Zhang Y, Zhou L, Leng Y, Lin H, et al. A Bim-targeting strategy overcomes adaptive bortezomib resistance in myeloma
                   through a novel link between autophagy and apoptosis. Blood 2014;124:2687-97.
               137.  Baranowska K, Misund K, Starheim KK, Holien T, Johansson I, et al. Hydroxychloroquine potentiates carfilzomib toxicity towards
                   myeloma cells. Oncotarget 2016;7:70845-56.
               138.  Ismail SI, Mahmoud IS, Msallam MM, Sughayer MA. Hotspot mutations of PIK3CA and AKT1 genes are absent in multiple
                   myeloma. Leuk Res 2010;34:824-6.
               139.  Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC. Understanding multiple myeloma pathogenesis in the bone
                   marrow to identify new therapeutic targets. Nat Rev Cancer 2007;7:585.
               140.  Ramakrishnan V, Kumar S. PI3K/AKT/mTOR pathway in multiple myeloma: from basic biology to clinical promise. Leuk Lymphoma
                   2018;59:2524-34.
               141.  Raje N, Kumar S, Hideshima T, Ishitsuka K, Chauhan D, et al. Combination of the mTOR inhibitor rapamycin and CC-5013 has
                   synergistic activity in multiple myeloma. Blood 2004;104:4188-93.
               142.  Yan H, Frost P, Shi Y, Hoang B, Sharma S, et al. Mechanism by which mammalian target of rapamycin inhibitors sensitize multiple
                   myeloma cells to dexamethasone-induced apoptosis. Cancer Res 2006;66:2305-13.
               143.  Ramakrishnan V, Kimlinger T, Timm M, Haug J, Rajkumar SV, et al. Multiple mechanisms contribute to the synergistic anti-myeloma
                   activity of the pan-histone deacetylase inhibitor LBH589 and the rapalog RAD001. Leuk Res 2014;38:1358-66.
               144.  Simmons JK, Patel J, Michalowski A, Zhang S, Wei BR, et al. TORC1 and class I HDAC inhibitors synergize to suppress mature B
                   cell neoplasms. Mol Oncol 2014;8:261-72.
               145.  Ramakrishnan V, Timm M, Haug JL, Kimlinger TK, Wellik LE, et al. Sorafenib, a dual Raf kinase/vascular endothelial growth factor
                   receptor inhibitor has significant anti-myeloma activity and synergizes with common anti-myeloma drugs. Oncogene 2010;29:1190-
                   202.
               146.  Francis LK, Alsayed Y, Leleu X, Jia X, Singha UK, et al. Combination mammalian target of rapamycin inhibitor rapamycin
                   and HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin has synergistic activity in multiple myeloma. Clin Cancer Res
                   2006;12:6826-35.
               147.  Baumann P, Hagemeier H, Mandl-Weber S, Franke D, Schmidmaier R. Myeloma cell growth inhibition is augmented by synchronous
                   inhibition of the insulin-like growth factor-1 receptor by NVP-AEW541 and inhibition of mammalian target of rapamycin by Rad001.
                   Anticancer Drugs 2009;20:259-66.
               148.  Ramakrishnan V, Kimlinger T, Haug J, Painuly U, Wellik L, et al. Anti-myeloma activity of Akt inhibition is linked to the activation
                   status of PI3K/Akt and MEK/ERK pathway. PLoS One 2012;7:e50005.
               149.  Hideshima T, Catley L, Yasui H, Ishitsuka K, Raje N, et al. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and
                   induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 2006;107:4053-62.
               150.  Mimura N, Hideshima T, Shimomura T, Suzuki R, Ohguchi H, et al. Selective and potent Akt inhibition triggers anti-myeloma
                   activities and enhances fatal endoplasmic reticulum stress induced by proteasome inhibition. Cancer Res 2014;74:4458-69.
               151.  McMillin DW, Ooi M, Delmore J, Negri J, Hayden P, et al. Antimyeloma activity of the orally bioavailable dual phosphatidylinositol
                   3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235. Cancer Res 2009;69:5835-42.
               152.  Baumann P, Mandl-Weber S, Oduncu F, Schmidmaier R. The novel orally bioavailable inhibitor of phosphoinositol-3-kinase and
                   mammalian target of rapamycin, NVP-BEZ235, inhibits growth and proliferation in multiple myeloma. Exp Cell Res 2009;315:485-97.
               153.  Aronson LI, Davenport EL, Mirabella F, Morgan GJ, Davies FE. Understanding the interplay between the proteasome pathway and
                   autophagy in response to dual PI3K/mTOR inhibition in myeloma cells is essential for their effective clinical application. Leukemia
                   2013;27:2397.
               154.  Li Z, Srivastava P. Heat-shock proteins. Curr Protoc Immunol 2004;Appendix 1:Appendix 1T.
               155.  Agarraberes FA, Terlecky SR, Dice JF. An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation.
                   J Cell Biol 1997;137:825-34.
               156.  Chiang HL, Terlecky SR, Plant CP, Dice JF. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular
                   proteins. Science 1989;246:382-5.
               157.  Wang B, Chen Z, Yu F, Chen Q, Tian Y, et al. Hsp90 regulates autophagy and plays a role in cancer therapy. Tumour Biol 2016;37:1-6.
               158.  Zhang L, Fok JH, Davies FE. Heat shock proteins in multiple myeloma. Oncotarget 2014;5:1132-48.
               159.  Marcu MG, Doyle M, Bertolotti A, Ron D, Hendershot L, et al. Heat shock protein 90 modulates the unfolded protein response by
                   stabilizing IRE1alpha. Mol Cell Biol 2002;22:8506-13.
               160.  Chatterjee M, Andrulis M, Stuhmer T, Muller E, Hofmann C, et al. The PI3K/Akt signaling pathway regulates the expression of
                   Hsp70, which critically contributes to Hsp90-chaperone function and tumor cell survival in multiple myeloma. Haematologica
                   2013;98:1132-41.
               161.  Braunstein MJ, Scott SS, Scott CM, Behrman S, Walter P, et al. Antimyeloma effects of the heat shock protein 70 molecular chaperone
                   inhibitor MAL3-101. J Oncol 2011;2011:232037.
               162.  Ishii T, Seike T, Nakashima T, Juliger S, Maharaj L, et al. Anti-tumor activity against multiple myeloma by combination of KW-2478,
                   an Hsp90 inhibitor, with bortezomib. Blood Cancer J 2012;2:e68.
               163.  Sydor JR, Normant E, Pien CS, Porter JR, Ge J, et al. Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone
                   hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90. Proc Natl Acad Sci U S A 2006;103:17408-13.
   86   87   88   89   90   91   92   93   94   95   96