Page 47 - Read Online
P. 47
Sellers et al. Intell Robot 2022;2(4):33354 I http://dx.doi.org/10.20517/ir.2022.21 Page 353
DOI
15. Jan GE, Luo C, Lin HT, Fung K. Complete area coverage pathplanning with arbitrary shape obstacles. J Autom Contr Eng 2019;7.
Available from: https://d1wqtxts1xzle7.cloudfront.net/79144324/20191218032728291withcoverpagev2.pdf?Expires=166193823
6&Signature=F9H9SowZfI7P9v74Xs1quZpkYuja0eBkKJxICLkgBppman~V~hvtZqk1ZChAOsmQM1p2471dlhAmBjm8EsjnfvOq
vVrjjfLCVHUKopgkdCHuQgdFors7oKBCBkgHI0tg9tVHAND8hqgv0izfLx3YKuQeNidjvTlfXT66CbSDDtsfuZUe6wTnKYrVIq993
iBCwGpQmWZ8nhQGPYqiwfC06aBPWusmC9jCpidVZpb6R0IvlZ~ii7gnj1~rdOG6AgaIqUlSEPR7csU~9oPDnZ2FZbXqcvlcuge75
e4JhqmG3sMdzLIfOSJofxK3Ff1NLakRVxpWYA20EbJTviA__&KeyPairId=APKAJLOHF5GGSLRBV4ZA [Last accessed on 31
Aug 2022].
16. Lei T, Sellers T, Rahimi S, Cheng S, Luo C. A natureinspired algorithm to adaptively safe navigation of a Covid19 disinfection robot.
In: International Conference on Intelligent Robotics and Applications. Cham: Springer; 2021. pp. 123–34. DOI
17. Lei T, Luo C, Sellers T, Wang Y, Liu L. Multitask allocation framework with spatial dislocation collision avoidance for multiple aerial
robots. IEEE Trans Aerosp Electron Syst 2022. DOI
18. Chen Y, Liu C, Shi BE, Liu M. Robot navigation in crowds by graph convolutional networks with attention learned from human gaze.
IEEE Rob Autom Lett 2020;5:2754–61. DOI
19. Chen J, Luo C, Krishnan M, Paulik M, Tang Y. An enhanced dynamic Delaunay triangulationbased path planning algorithm for au
tonomous mobile robot navigation. In: Intelligent Robots and Computer Vision XXVII: Algorithms and Techniques. vol. 7539. California,
USA: SPIE; 2010. pp. 253–64. DOI
20. Luo C, Xiao Y, Yang SX, Jan GE. Improving vehicle navigation by a headingenabled ACO approach. In: World Automation Congress.
Rio Grande, USA: IEEE; 2016. pp. 1–6. DOI
21. Lei T, Luo C, Jan GE, Fung K. Variable speed robot navigation by an ACO approach. In: International Conference on Swarm Intelligence.
Cham: Springer; 2019. pp. 232–42. DOI
22. Wang L, Luo C, Li M, Cai J. Trajectory planning of an autonomous mobile robot by evolving ant colony system. Int J Rob Autom
2017;32:406–13. DOI
23. Lei T, Luo C, Sellers T, Rahimi S. A batpigeon algorithm to crack detectionenabled autonomous vehicle navigation and mapping. Intell
Syst Appl 2021;12:200053. DOI
24. Luo C, Yang SX, Krishnan M, Paulik M. An effective vectordriven biologicallymotivated neural network algorithm to realtime au
tonomous robot navigation. In: IEEE International Conference on Robotics and Automation. Hong Kong, China; 2014. pp. 4094–99.
DOI
25. Na YK, Oh SY. Hybrid control for autonomous mobile robot navigation using neural network based behavior modules and environment
classification. Auton 2003;15:193–206. DOI
26. Zhong C, Luo C, Chu Z, Gan W. A continuous hopfield neural network based on dynamic step for the traveling salesman problem. In:
International Joint Conference on Neural Network. Anchorage, USA: IEEE; 2017. pp. 3318–23. DOI
27. Lazreg M, Benamrane N. Hybrid system for optimizing the robot mobile navigation using ANFIS and PSO. Rob Auton Syst
2022;153:104114. DOI
28. JensenNau KR, Hermans T, Leang KK. Nearoptimal areacoverage path planning of energyconstrained aerial robots with application
in autonomous environmental monitoring. IEEE Trans Autom Sci Eng 2021;18:1453–68. DOI
29. Janoš J, Vonásek V, Pěnička R. Multigoal path planning using multiple random trees. IEEE Rob Autom Lett 2021;6:4201–8. DOI
30. Ortiz S, Yu W. Autonomous navigation in unknown environment using sliding mode SLAM and genetic algorithm. Intell Robot ;1:131–50.
DOI
31. Bernardo R, Sousa J, Gonçalves PJ. Planning robotic agent actions using semantic knowledge for a home environment. Intell Robot
2021;1:101–15. DOI
32. Luo C, Yang SX. A bioinspired neural network for realtime concurrent map building and complete coverage robot navigation in unknown
environments. IEEE Trans Neural Netw 2008;19:1279–98. DOI
33. Shair S, Chandler JH, GonzÁlezVillela VJ, Parkin RM, Jackson MR. The use of aerial images and GPS for mobile robot waypoint
navigation. IEEE/ASME Trans Mechatron 2008;13:692–99. DOI
34. Yang Y, Khalife J, Morales JJ, Kassas ZM. UAV waypoint opportunistic navigation in GNSSdenied environments. IEEE Trans Aerosp
Electron Syst 2022;58:663–78. DOI
35. Teng F, Zhang H, Luo C, Shan Q. Delay tolerant containment control for secondorder multiagent systems based on communication
topology design. Neurocomputing 2020;380:11–19. DOI
36. Lee DT, Drysdale RL III. Generalization of Voronoi diagrams in the plane. SIAM J Comput 1981;10:73–87. DOI
37. Takahashi O, Schilling RJ. Motion planning in a plane using generalized Voronoi diagrams. IEEE Trans Robot 1989;5:143–50. DOI
38. Lei T, Luo C, Ball JE, Rahimi S. A graphbased antlike approach to optimal path planning. In: IEEE Congress on Evolutionary
Computation. Glasgow, UK; 2020. pp. 1–6. DOI
39. Li X, Li X, Khyam MO, Luo C, Tan Y. Visual navigation method for indoor mobile robot based on extended BoW model. CAAI Trans
Intell Tech 2017;2:142–47. Available from: https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/trit.2017.0020 [Last accessed on
31 Aug 2022].
40. Yang Y, Deng Q, Shen F, Zhao J, Luo C. A shapelet learning method for time series classification. In: IEEE International Conference on
Tools with Artificial Intelligence. San Jose, USA; 2016. pp. 423–30. DOI
41. Liu L, Luo C, Shen F. Multiagent formation control with target tracking and navigation. In: IEEE International Conference on Information
and Automation. Macao, China; 2017. pp. 98–103. DOI