Page 26 - Read Online
P. 26

Page 332                          Lei et al. Intell Robot 2022;2(4):313­32  I http://dx.doi.org/10.20517/ir.2022.18


               18. Luo C, Yang SX, Krishnan M, Paulik M. An effective vector­driven biologically­motivated neural network algorithm to real­time au­
                  tonomous robot navigation. In: IEEE International Conference on Robotics and Automation (ICRA); 2014. pp. 4094–99. DOI
               19. Zhu D, Tian C, Jiang X, Luo C. Multi­AUVs cooperative complete coverage path planning based on GBNN algorithm. In: 29th Chinese
                  Control and Decision Conference (CCDC); 2017. pp. 6761–66. DOI
               20. Lei T, Sellers T, Rahimi S, Cheng S, Luo C. A nature­inspired algorithm to adaptively safe navigation of a Covid­19 disinfection robot.
                  In: International Conference on Intelligent Robotics and Applications. Springer; 2021. pp. 123–34. DOI
               21. Luo C, Gao J, Murphey YL, Jan GE. A computationally efficient neural dynamics approach to trajectory planning of an intelligent vehicle.
                  In: 2014 International Joint Conference on Neural Networks (IJCNN). IEEE; 2014. pp. 934–39. DOI
               22. Luo C, Yang SX. A bioinspired neural network for real­time concurrent map building and complete coverage robot navigation in unknown
                  environments. IEEE Trans Neural Netw 2008;19:1279–98. DOI
               23. Acar EU, Choset H. Sensor­based coverage of unknown environments: Incremental construction of morse decompositions. Int J Robot
                  Res 2002;21:345–66. DOI
               24. Nasirian B, Mehrandezh M, Janabi­Sharifi F. Efficient coverage path planning for mobile disinfecting robots using graph­based represen­
                  tation of environment. Front Robot AI 2021;8:4. DOI
               25. Lei T, Luo C, Jan G, Bi Z. Deep learning­based complete coverage path planning with re­joint and obstacle fusion paradigm. Front Robot
                  AI 2022. DOI
               26. Li G, Hui X, Lin F, Zhao Y. Developing and evaluating poultry preening behavior detectors via mask region­based convolutional neural
                  network. Animals 2020;10:1762. DOI
               27. Li G, Xu Y, Zhao Y, Du Q, Huang Y. Evaluating convolutional neural networks for cage­free floor egg detection. Sensors 2020;20:332.
                  DOI
               28. Bochkovskiy A, Wang CY, Liao HYM. Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:200410934 2020.
                  DOI
               29. Tabler G, Berry I, Xin H, Barton T. Spatial distribution of death losses in broiler flocks. J appl poultry res 2002;11:388–96. DOI
               30. Li G, Ji B, Li B, Shi Z, Zhao Y, et al. Assessment of layer pullet drinking behaviors under selectable light colors using convolutional
                  neural network. Comput Electr Agricult 2020;172:105333. DOI
               31. Lei T, Luo C, Sellers T, Wang Y, Liu L. Multi­task allocation framework with spatial dislocation collision avoidance for multiple aerial
                  robots. IEEE Trans Aerosp Electr Syst 2022. DOI
               32. United States Department of Agriculture NASS. Agricultural resource management survey (ARMS) of the U.S. broiler industry;
                  2011. https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Ag_Resource_Management/ARMS_Broiler_Factsheet/Poultry%2
                  0Results%20­%20Fact%20Sheet.pdf[Lastaccessedon30Aug2022].
               33. Mendeş M. Growth curves for body weight and some body measurement of Ross 308 broiler chickens. J Appli Animal Res 2009;36:85–88.
                  DOI
               34. Chen W, Liu L. Pareto Monte Carlo tree search for multi­objective informative planning. arXiv preprint arXiv:211101825 2021. DOI
               35. Yang Y, Deng Q, Shen F, Zhao J, Luo C. A shapelet learning method for time series classification. In: IEEE 28th International Conference
                  on Tools with Artificial Intelligence (ICTAI); 2016. pp. 423–30. DOI
               36. Xing Y, Shen F, Luo C, Zhao J. L3­SVM: a lifelong learning method for SVM. In: 2015 international joint conference on neural networks
                  (IJCNN). IEEE; 2015. pp. 1–8. DOI
               37. Integer programming formulation of traveling salesman problems. J ACM (JACM) 1960;7:326–29. DOI
               38. Bergmann S, Schwarzer A, Wilutzky K, Louton H, Bachmeier J, et al. Behavior as welfare indicator for the rearing of broilers in an
                  enriched husbandry environment—a field study. J Veterin Behav 2017;19:90–101. https://www.sciencedirect.com/science/article/pii/S1
                  558787816301915 [Last accessed on 30 Aug 2022].
               39. Bixby B, Reinelt G. Traveling salesman problem library; 2022. http://elib.zib.de/pub/mp­testdata/tsp/tsplib/tsp/index.html [Last accessed
                  on 30 Aug 2022].
   21   22   23   24   25   26   27   28   29   30   31