Page 56 - Read Online
P. 56
Ortiz et al. Intell Robot 2021;1(2):131-50 I http://dx.doi.org/10.20517/ir.2021.09 Page 149
4. Arel I, Rose DC, Karnowski TP. Deep machine learninga new frontier in artificial intelligence research. IEEE Comput Intell Mag
2010;5:138.
5. Scheirer WJ, de Rezende Rocha A, Sapkota A, et al. Toward open set recognition. IEEE Trans Pattern Anal Mach Intell 2012;35:175772.
6. Ramos FT, Kumar S, Upcroft B, et al. A natural feature representation for unstructured environments. IEEE Trans Robot 2008;24:132940.
7. Lillywhite K, Lee DJ, Tippetts B, et al. A feature construction method for general object recognition. Pattern Recognition 2013;46:3300
14.
8. Chabini I, Lan S. Adaptation of the A* algorithm for the computation of fastest paths in deterministic discretetime dynamic networks.
IEEE trans Intell Transp Syst 2002;3:6074.
9. LaValle SM, Kuffner JJ Jr. Randomized kinodynamic planning. Int J Rob Res 2001;20:378–400.
10. Valencia R, AndradeCetto J. Mapping, planning and exploration with Pose SLAM. Berlin: Springer; 2018. p. 6084.
11. Wang X, Shi Y, Ding D, et al. Double global optimum genetic algorithm–particle swarm optimizationbased welding robot path planning.
Eng Optim 2016;48:299316.
12. Jones M, Peet MM. A generalization of Bellman’s equation with application to path planning, obstacle avoidance and invariant set esti
mation. Automatica 2021;127:109510.
13. Rehman NU, Kumar K, Abro GeM. Implementation of an autonomous path planning & obstacle avoidance UGV using SLAM. 2018
International Conference on Engineering and Emerging Technologies (ICEET); 2018 Feb 2223; Lahore, Pakistan. IEEE; 2018. p. 15.
14. de Moura Souza G, Toledo CFM. Genetic algorithm applied in UAV’s path planning. 2020 IEEE Congress on Evolutionary Computation
(CEC); 2020 Jul 1924; Glasgow, UK. IEEE; 2020. p. 18.
15. Zhang X, Zhao Y, Deng N, et al. Dynamic path planning algorithm for a mobile robot based on visible space and an improved genetic
algorithm. Int J Adv Robot Syst 2016;13:91.
16. Clemens J, Reineking T, Kluth T. An evidential approach to SLAM, path planning, and active exploration. Int J Approx Reason 2016;73:1
26.
17. Chen Y, Huang S, Fitch R. Active SLAM for mobile robots with area coverage and obstacle avoidance. IEEE ASME Trans Mechatron
2020;25:118292.
18. da Silva Arantes M, Toledo C F M, Williams B C, et al. Collisionfree encoding for chanceconstrained nonconvex path planning. IEEE
Trans Robot 2019;35:43348.
19. Yu W, Zamora E, Soria A. Ellipsoid SLAM: a novel set membership method for simultaneous localization and mapping. Autonomous
Robots 2016;40:12537.
20. Williams H, Browne WN, Carnegie DA. Learned action slam: sharing slam through learned path planning information between heteroge
neous robotic platforms. Appl Soft Comput 2017;50:31326.
21. Dissanayake MWMG, Newman P, Clark S, et al A solution to the simultaneous localization and map building (SLAM) problem. IEEE
Trans Rob Autom 2001;17:22941.
22. Thrun S, Liu Y, Koller D, et al. Simultaneous localization and mapping with sparse extended information filters. Int J Robot Res
2004;23:693716.
23. Folkesson J, Christensen HI. Closing the loop with graphical SLAM. IEEE Trans Robot 2007;23:73141.
24. Ho KL, Newman P. Loop closure detection in SLAM by combining visual and spatial appearance. Rob Auton Syst 2006;54:7409.
25. Nieto J, Guivant J, Nebot E. Denseslam: simultaneous localization and dense mapping. Int J Robot Res 2006;25:71144
26. Chen SY. Kalman filter for robot vision: a survey. IEEE Trans Ind Electron 2011;59:440920.
27. Sibley G, Matthies L, Sukhatme G. Sliding window filter with application to planetary landing. J Field Robot 2010;27:587608.
28. Kaess M, Johannsson H, Roberts R, et al. iSAM2: Incremental smoothing and mapping using the Bayes tree. Int J Robot Res 2012;31:216
35.
29. Yang S, Scherer SA, Yi X, et al. Multicamera visual SLAM for autonomous navigation of micro aerial vehicles. Rob Auton Syst
2017;93:11634
30. Weiss S, Scaramuzza D, Siegwart R. Monocular‐SLAM–based navigation for autonomous micro helicopters in GPS‐denied environments.
J Field Robot 2011;28:854874
31. Zhu A, Yang SX. Neurofuzzybased approach to mobile robot navigation in unknown environments. IEEE Trans Syst Man Cybern C Appl
Rev 2007;37:61021.
32. Juang CF, Chang YC. Evolutionarygroupbased particleswarmoptimized fuzzy controller with application to mobilerobot navigation
in unknown environments. IEEE Trans Fuzzy Syst 2011;19:37992.
33. VillacortaAtienza JA, Makarov VA. Neural network architecture for cognitive navigation in dynamic environments. IEEE Trans Neural
Netw Learn Syst 2013;24:207587.
34. Song B, Wang Z, Sheng L. A new genetic algorithm approach to smooth path planning for mobile robots. Assem Autom 2016;36:13845.
35. Zhang Y, Gong D, Zhang J. Robot path planning in uncertain environment using multiobjective particle swarm optimization. Neurocom
puting 2013;103:17285.
36. Karami AH, Hasanzadeh M. An adaptive genetic algorithm for robot motion planning in 2D complex environments. Comput Electr Eng
2015;43:31729.
37. Pereira AGC, de Andrade BB. On the genetic algorithm with adaptive mutation rate and selected statistical applications. Comput Stat
2015;30:13150.
38. Tsai CC, Huang HC, Chan CK. Parallel elite genetic algorithm and its application to global path planning for autonomous robot navigation.
IEEE Trans Ind Electron 2011;58:481321.