Page 84 - Read Online
P. 84

Page 79                             Li et al. Intell Robot 2021;1(1):58-83  I http://dx.doi.org/10.20517/ir.2021.08



               DECLARATIONS
               Authors’ contributions
               Made substantial contributions to the research and investigation process, reviewed and summarized the lit-
               erature, wrote and edited the original draft: Li J, Xu Z, Zhu D
               Made substantial contributions to review and summarize the literature: Dong K, Yan T, Zeng Z
               Performed oversight and leadership responsibility for the research activity planning and execution as well as
               developed ideas and provided critical review, commentary and revision: Yang SX


               Availability of data and materials
               Not applicable.

               Financial support and sponsorship
               This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

               Conflicts of interest
               All authors declared that there are no conflicts of interest.

               Ethical approval and consent to participate
               Not applicable.

               Consent for publication
               Not applicable.

               Copyright
               © The Author(s) 2021.


               REFERENCES

               1.  Bekey GA. Autonomous robots: from biological inspiration to implementation and control. Boston: MIT press; 2005.
               2.  Li J, Yang SX, Xu Z. A survey on robot path planning using bio­inspired algorithms. In: 2019 IEEE International Conference on Robotics
                   and Biomimetics (ROBIO); 2019 Dec 6­8; Dali, China. IEEE; 2019. pp. 2111–16.
               3.  Pradhan B, Nandi A, Hui NB, Roy DS, Rodrigues JJPC. A novel hybrid neural network­based multirobot path planning with motion
                   coordination. IEEE Trans Veh Technol 2020;69:1319–27.
               4.  Huang HC. SoPC­based parallel ACO algorithm and its application to optimal motion controller design for intelligent omnidirectional
                   mobile robots. IEEE Trans Industr Inform 2013;9:1828–35.
               5.  Roberge V, Tarbouchi M, Labonte G. Fast genetic algorithm path planner for fixed­wing military UAV using GPU. IEEE Trans Aerosp
                   Electron Syst 2018;54:2105–17.
               6.  Hu E, Yang SX, Chiu DKY. A non­time based tracking controller for multiple nonholonomic mobile robots. In: Proceedings 2002
                   IEEE International Conference on Robotics and Automation; 2002 May 11­15 ; Washington, USA. IEEE; 2002. pp. 3954–59.
               7.  Huan TT, Kien CV, Anh HPH, Nam NT. Adaptive gait generation for humanoid robot using evolutionary neural model optimized with
                   modified differential evolution technique. Neurocomputing 2018;320:112–20.
               8.  Guo K, Pan Y, Yu H. Composite learning robot control with friction compensation: a neural network­based Approach. IEEE Trans Ind
                   Electron 2019;66:7841–51.
               9.  Zhang Z, Yan Z. A varying parameter recurrent neural network for solving nonrepetitive motion problems of redundant robot manipula­
                   tors. IEEE Trans Control Syst Technol 2019;27:2680–87.
               10.  Hu Y, Yang SX. A knowledge based genetic algorithm for path planning of a mobile robot. In: IEEE International Conference on
                   Robotics and Automation, 2004. Proceedings. ICRA’04; 2004 Apr 26­ May 1; New Orleans, USA. vol. 5. IEEE; 2004. pp. 4350–55.
               11.  Zeng Y, Li J, Yang S, Ren E. A bio­inspired control strategy for locomotion of a quadruped robot. Applied Sciences 2018;8:56.
               12.  Grossberg S. Contour enhancement, short term memory, and constancies in reverberating neural networks. Stud Appl Math 1973;52:213–
                   57.
               13.  Yang SX, Meng M. Neural network approaches to dynamic collision­free trajectory generation. IEEE Trans Syst Man Cybern B Cybern
                   2001;31:302–18.
               14.  Yang SX, Zhu A, Yuan G, Meng MQ. A bioinspired neurodynamics­based approach to tracking control of mobile robots. IEEE Trans
   79   80   81   82   83   84   85   86   87   88   89