Page 86 - Read Online
P. 86

Page 81                             Li et al. Intell Robot 2021;1(1):58-83  I http://dx.doi.org/10.20517/ir.2021.08



               42.  Sun B, Zhu D, Tian C, Luo C. Complete coverage autonomous underwater vehicles path planning based on glasius bio­inspired
                   neural network algorithm for discrete and centralized programming.  IEEE Trans Cogn Commun Netw 2019;11:73–84.
               43.  Chen M, Zhu D. Multi­AUV cooperative hunting control with improved Glasius bio­inspired neural network. J Navig 2018;72:759–76.
               44.  Chen M, Zhu D. Real­time path planning for a robot to track a fast moving target based on improved Glasius bio­inspired neural networks.
                   Int J Intell Robot Appl 2019;3:186–95.
               45.  Willms AR, Yang SX. An efficient dynamic system for real­time robot­path planning. IEEE Trans Syst Man Cybern B Cybern
                   2006;36:755–66.
               46.  Willms AR, Yang SX. Real­time robot path planning via a distance­propagating dynamic system with obstacle clearance. IEEE Trans
                   Syst Man Cybern B Cybern 2008;38:884–93.
               47.  Li S, Meng MQH, Chen W, et al. SP­NN: A novel neural network approach for path planning. In: 2007 IEEE Interna­ tional
                   Conference on Robotics and Biomimetics (ROBIO); 2007 Dec 15­18; Sanya, China. IEEE; 2007. pp. 1355–60.
               48.  Qu H, Yang SX, Willms AR, Yi Z. Real­time robot path planning based on a modified pulse­coupled neural network model. IEEE Trans
                   Neural Netw 2009;20:1724–39.
               49.  Qu H, Yi Z, Yang SX. Efficient shortest­path­tree computation in network routing based on pulse­coupled neural networks. IEEE Trans
                   Cybern 2013;43:995–010.
               50.  Zhong Y, Shirinzadeh B, Tian Y. A new neural network for robot path planning. In: 2008 IEEE/ASME International Conference on
                   Advanced Intelligent Mechatronics; 2008 July 2­5; Xi’an, China. IEEE; 2008. pp. 1361–66.
               51.  Chen Y, Liang J, Wang Y, et al. Autonomous mobile robot path planning in unknown dynamic environments using neural dynamics.
                   Soft Comput 2020;24:13979–95.
               52.  Bueckert J, Yang SX, Yuan X, Meng MQH. Neural dynamics based multiple target path planning for a mobile robot. In: 2007 IEEE Inter­
                   national Conference on Robotics and Biomimetics (ROBIO); 2007 Dec 5­18; Sanya, China. IEEE; 2007. pp. 1047–52.
               53.  Li H, Yang SX, Biletskiy Y. Neural network based path planning for a multi­robot system with moving obstacles. In: 2008 IEEE
                   International Conference on Automation Science and Engineering; 2008 Aug 23­26; Arlington, USA. IEEE; 2008. pp. 410–19.
               54.  Yuan X, Yang SX. Multirobot­based nanoassembly planning with automated path generation. IEEE ASME Trans Mechatron
                   2007;12:352–56.
               55.  Zhu A, Cai G, Yang SX. Theoretical analysis of a neural dynamics based model for robot trajectory generation. In: IEEE 2002 Inter­
                   national Conference on Communications, Circuits and Systems and West Sino Expositions; 2002 Jun 29­Jul 1; Chengdu, China. IEEE;
                   2002. pp. 1184–88.
               56.  Ni J, Yang SX. Bioinspired neural network for real­time cooperative hunting by multirobots in unknown environments. IEEE Trans
                   Neural Netw 2011;22:2062–77.
               57.  Yang SX, Luo C. A neural network approach to complete coverage path planning. IEEE Trans Syst Man Cybern B Cybern 2004;34:718–
                   24.
               58.  Godio S, Primatesta S, Guglieri G, Dovis F. A bioinspired neural network­based approach for cooperative coverage planning of UAVs.
                   Information 2021;12:51.
               59.  Luo C, Yang SX, Yuan X. Real­time area­covering operations with obstacle avoidance for cleaning robots. In: IEEE/RSJ Interna­
                   tional Conference on Intelligent Robots and System; 2002 Sept 30­Oct 4; Lausanne, Switzerland. IEEE; 2002. pp. 2359–64.
               60.  Yang SX, Luo C, Meng M. A neural computational algorithm for coverage path planning in changing environments. In: IEEE 2002
                   International Conference on Communications, Circuits and Systems and West Sino Expositions; 2002 Jun 29­Jul 1; Chengdu, China.
                   IEEE; 2002. pp. 1174–78.
               61.  Luo C, Yang SX. A real­time cooperative sweeping strategy for multiple cleaning robots. In: Proceedings of the IEEE Internatinal
                   Symposium on Intelligent Control; 2002 Oct 30­30; Vancouver, Canada. IEEE; 2002. pp. 660–65.
               62.  Zhang J, Lv H, He D, et al. Discrete bioinspired neural network for complete coverage path planning. Int J Rob Autom 2017;32.
               63.  Luo C, Yang SX. A bioinspired neural network for real­time concurrent map building and complete coverage robot navigation in unknown
                   environments. IEEE Trans Neural Netw 2008;19:1279–98.
               64.  Luo C, Yang SX, Meng MQH. Real­time map building and area coverage in unknown environments. In: Proceedings of the 2005
                   IEEE International Conference on Robotics and Automation; 2005 Apr 18­22; Barcelona, Spain. IEEE; 2005. pp. 1736–41.
               65.  Luo C, Yang S, Meng M. Neurodynamics based complete coverage navigation with real­time map building in unknown environments. In:
                   2006 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2006 Oct 9­15; Beijing, China. IEEE; 2006. pp. 4228–33.
               66.  Luo C, Yang SX, Li X, Meng MQH. Neural­dynamics­driven complete area coverage navigation through cooperation of multiple mobile
                   robots. IEEE Trans Consum Electron 2017;64:750–60.
               67.  Yu Z, Tao J, Xiong J, Luo A, Yang SX. Neural­dynamics­based path planning of a bionic robotic Fish. In: 2019 IEEE Interna­
   81   82   83   84   85   86   87   88   89   90   91