Page 53 - Read Online
P. 53

Page 522                          Liu et al. Intell Robot 2024;4(4):503-23  I http://dx.doi.org/10.20517/ir.2024.29


               18. Howard AG, Zhu M, Chen B, et al.  Mobilenets: efficient convolutional neural networks for mobile vision applications.  arXiv
                  2017;arXiv:1704.01861. Available from: https://doi.org/10.48550/arXiv.1704.04861. [accessed 23 December 2024].
               19. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the
                  IEEE conference on computer vision and pattern recognition; 2018. pp. 4510–20. Available from: https://openaccess.thecvf.com/conten
                  t_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html. [accessed 23 December 2024].
               20. Zhang X, Zhou X, Lin M, Sun J. Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: 2018 IEEE/CVF
                  Conference on Computer Vision and Pattern Recognition; 2018 Jun 18-23; Salt Lake City, USA. IEEE; 2018. pp. 6848–56. DOI
               21. Ma N, Zhang X, Zheng HT, Sun J. ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Proceedings of the
                  European conference on computer vision (ECCV); 2018. pp. 122-38. DOI
               22. Jia N, Sun Y, Liu X. TFGNet: traffic salient object detection using a feature deep interaction and guidance fusion. IEEE Trans Intell
                  Transp Syst 2023;25:3020-30. DOI
               23. Cheng MM, Mitra NJ, Huang X, Torr PH, Hu SM. Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell
                  2014;37:569–82. DOI
               24. Wang L, Lu H, Ruan X, Yang MH. Deep networks for saliency detection via local estimation and global search. In: 2015 IEEE Conference
                  on Computer Vision and Pattern Recognition (CVPR); 2015 Jun 07-12; Boston, USA. IEEE; 2015. pp. 3183–92. DOI
               25. Zhang P, Wang D, Lu H, Wang H, Ruan X. Amulet: aggregating multi-level convolutional features for salient object detection. In: 2017
                  IEEE International Conference on Computer Vision (ICCV); 2017 Oct 22-29; Venice, Italy. IEEE; 2017. pp. 202–11. DOI
               26. Chen Z, Xu Q, Cong R, Huang Q. Global context-aware progressive aggregation network for salient object detection. Proc AAAI conf
                  Artif Intell 2020;34:10599–606. DOI
               27. Huang K, Tian C, Su J, Lin JCW. Transformer-based cross reference network for video salient object detection. Pattern Recogn Lett
                  2022;160:122–7. DOI
               28. Li Y, Ma J. A swin transformer-based asymmetrical network for light field salient object detection. In: 5th International Conference on
                  Information Science, Electrical, and Automation Engineering (ISEAE 2023). 2023. pp. 171–6. DOI
               29. Han S, Pool J, Tran J, Dally WJ. Learning both weights and connections for efficient neural network. In: Proceedings of the 28th
                  International Conference on Neural Information Processing Systems. 2015. pp. 1135-43. Available from: https://dl.acm.org/doi/10.5555
                  /2969239.2969366. [Last accessed on 23 Dec 2024]
               30. Courbariaux M, Bengio Y, David JP. BinaryConnect: training deep neural networks with binary weights during propagations. In:
                  Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015. pp. 3123-31. Available from:
                  https://dl.acm.org/doi/10.5555/2969442.2969588. [Last accessed on 23 Dec 2024]
               31. Huang Z, Wang N. Like what you like: knowledge distill via neuron selectivity transfer. arXiv 2017;arXiv:1707.01219. Available from:
                  https://doi.org/10.48550/arXiv.1707.01219. [accessed 23 December 2024].
               32. Tan M, Le Q. Efficientnet: rethinking model scaling for convolutional neural networks. In: Proceedings of the 36th International
                  Conference on Machine Learning. PMLR; 2019. pp. 6105–14. Available from: https://proceedings.mlr.press/v97/tan19a.html?ref=jina-ai
                  -gmbh.ghost.io. [Last accessed on 23 Dec 2024].
               33. Tan M, Le Q. Efficientnetv2: smaller models and faster training. In: Proceedings of the 36th International Conference on Machine
                  Learning. PMLR; 2021. pp. 10096–106. Available from: https://proceedings.mlr.press/v139/tan21a.html. [Last accessed on 23 Dec 2024].
               34. Han K, Wang Y, Tian Q, Guo J, Xu C, Xu C. Ghostnet: more features from cheap operations. In: 2020 IEEE/CVF Conference on
                  Computer Vision and Pattern Recognition (CVPR); 2020 Jun 13-19; Seattle, USA. IEEE; 2020. pp. 1580–9. DOI
               35. Wang Z, Zhang Y, Liu Y, Zhu D, Coleman SA, Kerr D. Elwnet: an extremely lightweight approach for real-time salient object detection.
                  IEEE Trans Circuits Syst Video Technol 2023;33:6404-17. DOI
               36. Sreelakshmi K, Akarsh S, Vinayakumar R, Soman KP. Capsule neural networks and visualization for segregation of plastic and non-
                  plastic wastes. In: 2019 5th international conference on advanced computing & communication systems (ICACCS); 2019 Mar 15-16;
                  Coimbatore, India. IEEE; 2019. pp. 631–6. DOI
               37. Hinton GE, Sabour S, Frosst N. Matrix capsules with EM routing. In: International conference on learning representations; 2018. Available
                  from: https://openreview.net/forum?id=HJWLfGWRb&. [Last accessed on 23 Dec 2024].
               38. Saqur R, Vivona S. Capsgan: using dynamic routing for generative adversarial networks. In: Advances in Computer Vision: Proceedings
                  of the 2019 Computer Vision Conference (CVC). Springer; 2020. pp. 511–25. DOI
               39. Cheng X, He J, He J, Xu H. Cv-CapsNet: complex-valued capsule network. IEEE Access 2019;7:85492–9. DOI
               40. Sun K, Yuan L, Xu H, Wen X. Deep tensor capsule network. IEEE Access 2020;8:96920–33. DOI
               41. Liu Y, Dong X, Zhang D, Xu S. Deep unsupervised part-whole relational visual saliency. Neurocomputing 2024;563:126916. DOI
               42. Zhang Q, Duanmu M, Luo Y, Liu Y, Han J. Engaging part-whole hierarchies and contrast cues for salient object detection. IEEE Trans
                  Circuits Syst Video Technol 2021;32:3644–58. DOI
               43. Liu Y, Zhou L, Wu G, Xu S, Han J. Tcgnet: type-correlation guidance for salient object detection. IEEE Trans Intell Transp Syst
                  2023;25:6633-44. DOI
               44. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: 2017 IEEE Conference on Computer Vision and Pattern
                  Recognition (CVPR); 2017 Jul 21-26; Honolulu, USA. IEEE; 2017. pp. 2881–90. DOI
               45. Wang L, Lu H, Wang Y, Feng M, Wang D, Yin B. Learning to detect salient objects with image-level supervision. In: 2017 IEEE
                  Conference on Computer Vision and Pattern Recognition (CVPR); 2017 Jul 21-26; Honolulu, USA. IEEE; 2017. pp. 136–45. DOI
               46. Yang C, Zhang L, Lu H, Ruan X, Yang MH. Saliency detection via graph-based manifold ranking. In: 2013 IEEE Conference on Computer
                  Vision and Pattern Recognition; 2013 Jun 23-28; Portland, USA. IEEE; 2013. pp. 3166–73. DOI
   48   49   50   51   52   53   54   55   56   57   58