Page 60 - Read Online
P. 60

Wang et al. Intell Robot 2023;3(4):538-64  I http://dx.doi.org/10.20517/ir.2023.30  Page 27 of 27



               9.  Zhong Y, Yao P, Sun Y, Yang J. Method of multi-UAVs cooperative search for Markov moving targets. In: 2017 29th Chinese Control
                  And Decision Conference (CCDC). IEEE; 2017. pp. 6783–89. DOI
               10. Hu X, Liu Y, Wang G. Optimal search for moving targets with sensing capabilities using multiple UAVs. J Syst Eng Electron 2017;28:526–
                  35. DOI
               11. Yue W, Xi Y, Guan X. A new searching approach using improved multi-ant colony scheme for multi-UAVs in unknown environments.
                  Ieee Access 2019;7:161094-102. DOI
               12. Li Z, Xu P, Chang X, et al. When object detection meets knowledge distillation: A survey. IEEE Trans Pattern Anal Mach Intell
                  2023;45:10555-79. DOI
               13. Li M, Huang PY, Chang X, et al. Video pivoting unsupervised multi-modal machine translation. IEEE Trans Pattern Anal Mach Intell
                  2023;45:3918-32. DOI
               14. Shorakaei H, Vahdani M, Imani B, Gholami A. Optimal cooperative path planning of unmanned aerial vehicles by a parallel genetic
                  algorithm. Robotica 2016;34:823–36. DOI
               15. Alanezi MA, Bouchekara HR, Apalara TAA, et al. Dynamic target search using multi-UAVs based on motion-encoded genetic algorithm
                  with multiple parents. IEEE Access 2022;10:77922–39. DOI
               16. Luo R, Zheng H, Guo J. Solving the multi-functional heterogeneous UAV cooperative mission planning problem using multi-swarm fruit
                  fly optimization algorithm. Sensors 2020;20:5026. DOI
               17. Ma C, Zhu X, Liu S, Gui J, Yao W. A multi-UAV cooperative searching method based on differential evolution. In: 2022 34th Chinese
                  Control and Decision Conference (CCDC). IEEE; 2022. pp. 5643–48. DOI
               18. Zhikuo C, Chen W, Yuxing Z. A cooperative approach to multi-UAVs search for mobile targets based on pigeon-inspired optimization.
                  In: 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC). IEEE; 2018. pp. 1–8. DOI
               19. Fang Z, Wang J, Ren Y, et al. Age of information in energy harvesting aided massive multiple access networks. IEEE J Select Areas
                  Commun 2022;40:1441–56. DOI
               20. Zhang Y, Wang J, Zhang L, et al. Reliable transmission for NOMA systems with randomly deployed receivers. Ieee T Commun
                  2022;71:1179–92. DOI
               21. Zhou Z, Liu D, Bao W, et al. Multi-UAV cooperative target search method based on nash equilibrium distributed model predictive control.
                  In: Proceedings of the 4th International Symposium on Application of Materials Science and Energy Materials; 2020. pp. 631–41. DOI
               22. Yao P, Wei X. Multi-UAV information fusion and cooperative trajectory optimization in target search. IEEE Syst J 2021;16:4325–33. DOI
               23. Wei W, Wang J, Fang Z, et al. 3U: Joint design of UAV-USV-UUV networks for cooperative target hunting. IEEE T Veh Technol
                  2022;72:4085–90. DOI
               24. Jia Z, Wenjun X, Qing G. Research on Multi-UAV collaborative search in dynamic environment. In: MATEC Web of Conferences. vol.
                  173. EDP Sciences; 2018. p. 02002. DOI
               25. Kamrani F, Ayani R. Using on-line simulation for adaptive path planning of UAVs. In: 11th IEEE International Symposium on Distributed
                  Simulation and Real-Time Applications (DS-RT’07). IEEE; 2007. pp. 167–74. DOI
               26. de Alcantara Andrade FA, Reinier Hovenburg A, Netto de Lima L, et al. Autonomous unmanned aerial vehicles in search and rescue
                  missions using real-time cooperative model predictive control. Sensors 2019;19:4067. DOI
               27. Grefenstette JJ. Genetic algorithms and machine learning. In: Proceedings of the sixth annual conference on Computational learning
                  theory; 1993. pp. 3–4. DOI
               28. Das S, Suganthan PN. Differential evolution: a survey of the state-of-the-art. IEEE T Evolut Comput 2010;15:4–31. DOI
               29. Gao Wf, Liu Sy, Huang Ll. A novel artificial bee colony algorithm based on modified search equation and orthogonal learning. IEEE T
                  Cybernetics 2013;43:1011–24. DOI
   55   56   57   58   59   60   61   62   63   64   65