Page 30 - Read Online
P. 30
Phadke et al. Intell Robot 2023;3:453-78 https://dx.doi.org/10.20517/ir.2023.27 Page 475
towards unmanned aerial vehicle: architecture, modeling and evaluation. IEEE Trans Intell Transport Syst 2021;22:4531-40. DOI
41. Quamar MM, ElFerik S. Control and coordination for swarm of uavs under multi-predator attack. in proceedings of the 2023 systems
and information engineering design symposium (SIEDS); 2023 April 96-101; Charlottesville, VA, USA. DOI
42. Chi P, Wei J, Wu K, Di B, Wang Y. A bio-inspired decision-making method of UAV swarm for attack-defense confrontation via
multi-agent reinforcement learning. Biomimetics 2023;8:222. DOI PubMed PMC
43. Opromolla R, Inchingolo G, Fasano G. Airborne visual detection and tracking of cooperative uavs exploiting deep learning. Sensors
2019;19:4332. DOI PubMed PMC
44. Makkapati VR, Tsiotras, P. Apollonius allocation algorithm for heterogeneous pursuers to capture multiple evaders. arXiv
2006:10253. DOI
45. Lappas V, Shin H, Tsourdos A, et al. Autonomous unmanned heterogeneous vehicles for persistent monitoring. Drones 2022;6:94.
DOI
46. Sial MB, Zhang Y, Wang S, et al. Bearing-based distributed formation control of unmanned aerial vehicle swarm by quaternion-
based attitude synchronization in three-dimensional space. Drones 2022;6:227. DOI
47. Li S, Wang X, Wang S, Zhang Y. Distributed bearing-only formation control for UAV-UWSV heterogeneous system. Drones
2023;7:124. DOI
48. Vásquez BL, Barca JC. Adversarial scenarios for herding UAVs and counter-swarm techniques. Robotica 2023;41:1436-51. DOI
49. Jiang B, Qin K, Li T, Lin B, Shi M. Robust Cooperative control of UAV swarms for dual-camp divergent tracking of a heterogeneous
target. Drones 2023;7:306. DOI
50. Cai Y, Wei Z, Li R, Ng DWK, Yuan J. Joint trajectory and resource allocation design for energy-efficient secure uav communication
systems. IEEE Trans Commun 2020;68:4536-53. DOI
51. Zimroz P, Trybała P, Wróblewski A, et al. Application of UAV in search and rescue actions in underground mine-A specific sound
detection in noisy acoustic signal. Energies 2021;14:3725. DOI
52. Wang C, Liu P, Zhang T, Sun J. The adaptive vortex search algorithm of optimal path planning for forest fire rescue UAV. In
Proceedings of the Advanced Information Technology, Electronic and Automation Control Conference(IAEAC 2018). Chongqing,
China; 2018.pp.400-03. DOI
53. Ausonio E, Bagnerini P, Ghio M. Drone swarms in fire suppression activities: a conceptual framework. Drones 2021;5:17. DOI
54. Hu J, Niu H, Carrasco J, Lennox B, Arvin F. Fault-tolerant cooperative navigation of networked UAV swarms for forest fire
monitoring. Aerospace Science and Technology 2022;123:107494. DOI
55. Saffre F, Hildmann H, Karvonen H, Lind T. Monitoring and cordoning wildfires with an autonomous swarm of unmanned aerial
vehicles. Drones 2022;6:301. DOI
56. Madridano Á, Al-kaff A, Flores P, Martín D, de la Escalera A. Software architecture for autonomous and coordinated navigation of
uav swarms in forest and urban firefighting. Appl Sci 2021;11:1258. DOI
57. Aydin B, Selvi E, Tao J, Starek M. Use of fire-extinguishing balls for a conceptual system of drone-assisted wildfire fighting. Drones
2019;3:17. DOI
58. Alsammak ILH, Mahmoud MA, Aris H, Alkilabi M, Mahdi MN. The use of swarms of unmanned aerial vehicles in mitigating area
coverage challenges of forest-fire-extinguishing activities: a systematic literature review. Forests 2022;13:811. DOI
59. Bharany S, Sharma S, Frnda J, et al. Wildfire monitoring based on energy efficient clustering approach for FANETS. Drones
2022;6:193. DOI
60. Lee S, Morrison JR. Decision support scheduling for maritime search and rescue planning with a system of UAVs and fuel service
stations. In Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS). Denver, CO, USA; 2015.pp.1168-
77. DOI
61. Chen M, Zeng F, Xiong X, Zhang X, Chen Z. A maritime emergency search and rescue system based on unmanned aerial vehicle and
its landing platform. In Proceedings of the 2021 IEEE International Conference on Electrical Engineering and Mechatronics
Technology (ICEEMT). Qingdao, China; 2021.pp.758-61. DOI
62. Cho S, Park J, Park H, Kim S. Multi-UAV coverage path planning based on hexagonal grid decomposition in maritime search and
rescue. Mathematics 2022;10:83. DOI
63. Liu L, Gu Q, Li L, Lai X. Research on maritime search and rescue recognition based on agent technology. In Proceedings of the 2020
International Conference on Artificial Intelligence and Electromechanical Automation (AIEA); 2020 June 201-5; Tianjin, China.
DOI
64. Phadke A, Medrano A. Drone2Drone: a search and rescue framework for finding lost UAV swarm agents. TAMUCC- Symposium
for Student Innovation, Research, and Creative Activities Posters; 2023 April. DOI
65. Queralta JP, Taipalmaa J, Can Pullinen B, et al. Collaborative multi-robot search and rescue: planning, coordination, perception, and
active vision. IEEE Access 2020;8:191617-43. DOI
66. Lygouras E, Santavas N, Taitzoglou A, Tarchanidis K, Mitropoulos A, Gasteratos A. Unsupervised human detection with an
embedded vision system on a fully autonomous UAV for search and rescue operations. Sensors 2019;19:3542. DOI PubMed PMC
67. Gianni M, Ferri F, Menna M, Pirri F. Adaptive robust three-dimensional trajectory tracking for actively articulated tracked vehicles*.
J Field Robotics 2016;33:901-30. DOI
68. Arnold R, Jablonski J, Abruzzo B, Mezzacappa E. Heterogeneous UAV multi-role swarming behaviors for search and rescue. In
Proceedings of the Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA). Victoria, BC,