Page 29 - Read Online
P. 29

Page 474                         Phadke et al. Intell Robot 2023;3:453-78  https://dx.doi.org/10.20517/ir.2023.27

               10.       Phadke A, Antonio Medrano F, Chu T. Engineering resiliency in UAV swarms-a bibliographic analysis. J Phys: Conf Ser
                    2022;2330:012007.  DOI
               11.       Wang J, Teng X, Li Z, Yu Q, Bian Y, Wei J. VSAI: A multi-view dataset for vehicle detection in complex scenarios using aerial
                    images. Drones 2022;6:161.  DOI
               12.       VOSviewer-visualizing scientific landscapes. Available from: https://www.vosviewer.com [Last accessed on 21 Sep 2023].
               13.       Iqbal U, Riaz MZB, Zhao J, Barthelemy J, Perez P. Drones for flood monitoring, mapping and detection: a bibliometric review.
                    Drones 2023;7:32.  DOI
               14.       Rodríguez M, Melgar SG, Cordero AS, Márquez JMA. A critical review of unmanned aerial vehicles (UAVs) use in architecture and
                    urbanism: scientometric and bibliometric analysis. Appl Sci 2021;11:9966.  DOI
               15.       Phadke A, Medrano FA. Towards resilient UAV swarms-a breakdown of resiliency requirements in UAV swarms. Drones
                    2022;6:340.  DOI
               16.       Abdelkader M, Güler S, Jaleel H, Shamma JS. Aerial swarms: recent applications and challenges. Curr Robot Rep 2021;2:309-20.
                    DOI  PubMed  PMC
               17.       Phadke A, Medrano FA, Sekharan CN, Chu T. Designing UAV Swarm experiments: a simulator selection and experiment design
                    process. Sensors 2023;23:7359.  DOI  PubMed  PMC
               18.       Merz M, Pedro D, Skliros V, et al. Autonomous UAS-based agriculture applications: general overview and relevant european case
                    studies. Drones 2022;6:128.  DOI
               19.       Pearson S, Camacho-villa TC, Valluru R, et al. Robotics and Autonomous systems for net zero agriculture. Curr Robot Rep
                    2022;3:57-64.  DOI
               20.       Lee HS, Shin BS, Thomasson JA, Wang T, Zhang Z, Han X. Development of multiple UAV collaborative driving systems for
                    improving field phenotyping. Sensors 2022;22:1423.  DOI  PubMed  PMC
               21.       Zhang W, Miao Z, Li N, He C, Sun T. Review of current robotic approaches for precision weed management. Curr Robot Rep
                    2022;3:139-51.  DOI  PubMed  PMC
               22.       Tsouros DC, Bibi S, Sarigiannidis PG. A review on UAV-based applications for precision agriculture. Information 2019;10:349.
                    DOI
               23.       Odonkor P, Ball Z, Chowdhury S. Distributed operation of collaborating unmanned aerial vehicles for time-sensitive oil spill
                    mapping. Swarm and Evolutionary Computation 2019;46:52-68.  DOI
               24.       Vasilijevic A, Calado P, Lopez-Castejon F, et al. Heterogeneous robotic system for underwater oil spill survey. Genova, Italy; 2015,
                    pp. 1-7.  DOI
               25.       Roldán JJ, Garcia-Aunon P, Garzón M, de León J, Del Cerro J, Barrientos A. Heterogeneous multi-robot system for mapping
                    environmental variables of greenhouses. Sensors 2016;16:1018.  DOI  PubMed  PMC
               26.       Goian A, Ashour R, Ahmad U, Taha T, Almoosa N, Seneviratne L. Victim localization in USAR scenario exploiting multi-layer
                    mapping structure. Remote Sens 2019;11:2704.  DOI
               27.       Cardona GA, Calderon JM. Robot Swarm navigation and victim detection using rendezvous consensus in search and rescue
                    operations. Appl Sci 2019;9:1702.  DOI
               28.       Siemiatkowska B, Stecz W. A framework for planning and execution of drone swarm missions in a hostile environment. Sensors
                    2021;21:4150.  DOI  PubMed  PMC
               29.       Gans NR, Rogers JG. Cooperative multirobot systems for military applications. Curr Robot Rep 2021;2:105-11.  DOI
               30.       Ko Y, Kim J, Duguma DG, Astillo PV, You I, Pau G. Drone secure communication protocol for future sensitive applications in
                    military zone. Sensors 2021;21:2057.  DOI  PubMed  PMC
               31.       Nex F, Duarte D, Steenbeek A, Kerle N. Towards real-time building damage mapping with low-cost UAV solutions. Remote Sens
                    2019;11:287.  DOI
               32.       Zhang R, Li H, Duan K, et al. Automatic detection of earthquake-damaged buildings by integrating UAV oblique photography and
                    infrared thermal imaging. Remote Sens 2020;12:2621.  DOI
               33.       Nagasawa R, Mas E, Moya L, Koshimura S. Model-based analysis of multi-UAV path planning for surveying postdisaster building
                    damage. Sci Rep 2021;11:18588.  DOI  PubMed  PMC
               34.       Outay F, Mengash HA, Adnan M. Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure
                    management: Recent advances and challenges. Transp Res Part A Policy Pract 2020;141:116-29.  DOI  PubMed  PMC
               35.       Klaine PV, Nadas JPB, Souza RD, Imran MA. Distributed drone base station positioning for emergency cellular networks using
                    reinforcement learning. Cognit Comput 2018;10:790-804.  DOI  PubMed  PMC
               36.       Hydher H, Jayakody DNK, Hemachandra KT, Samarasinghe T. Intelligent UAV Deployment for a disaster-resilient wireless
                    network. Sensors 2020;20:6140.  DOI  PubMed  PMC
               37.       Ferrag MA, Maglaras L. Deliverycoin: an ids and blockchain-based delivery framework for drone-delivered services. Computers
                    2019;8:58.  DOI
               38.       Rinaldi M, Primatesta S, Bugaj M, Rostáš J, Guglieri G. Development of heuristic approaches for last-mile delivery tsp with a truck
                    and multiple drones. Drones 2023;7:407.  DOI
               39.       Phadke A, Ustymenko S. Updating the taxonomy of intrusion detection systems. in proceedings of the 2021 IEEE 45th annual
                    computers, software, and applications conference (COMPSAC). Madrid, Spain; 2021.pp.1085-91.  DOI
               40.       Miao Y, Tang Y, Alzahrani BA, Barnawi A, Alafif T, Hu L. Airborne LiDAR assisted obstacle recognition and intrusion detection
   24   25   26   27   28   29   30   31   32   33   34