Page 19 - Read Online
P. 19
Page 142 Liu et al. Intell Robot 2023;3(2):131-43 I http://dx.doi.org/10.20517/ir.2023.07
Conflicts of interest
All authors declared that there are no conflicts of interest.
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2023.
REFERENCES
1. Xu X, Cao D, Zhou Y, Gao J. Application of neural network algorithm in fault diagnosis of mechanical intelligence. Mech Syst Signal Pr
2020;141:106625. DOI
2. Qiao W, Lu D. A survey on wind turbine condition monitoring and fault diagnosis—part I: components and subsystems. IEEE Trans Ind
Electron 2015;62:6536–45. DOI
3. Hoang DT, Kang HJ. A survey on Deep Learning based bearing fault diagnosis. Neurocomputing 2019;335:327–35. DOI
4. Lei Y, Yang B, Jiang X, et al. Applications of machine learning to machine fault diagnosis: a review and roadmap. Mech Syst Signal Pr
2020;138:106587. DOI
5. Tran MQ, Amer M, Dababat A, Abdelaziz AY, Dai HJ, et al. Robust fault recognition and correction scheme for induction motors using
an effective IoT with deep learning approach. Measurement 2023;207:112398. DOI
6. Gong W, Chen H, Zhang Z, et al. A novel Deep Learning method for intelligent fault diagnosis of rotating machinery based on improved
CNN-SVM and multichannel data fusion. Sensors 2019;19:1693. DOI
7. Pandey SK, Janghel RR. Recent Deep Learning techniques, challenges and its applications for medical healthcare system: a review.
Neural Process Lett 2019;50:1907–35. DOI
8. Liu R, Yang B, Zio E, Chen X. Artificial intelligence for fault diagnosis of rotating machinery: a review. Mech Syst Signal Pr 2018;108:33–
47. DOI
9. Zhuang F, Qi Z, Duan K, et al. A comprehensive survey on transfer learning. Proceedings of the IEEE 2021;109:43–76. DOI
10. Qian C, Zhu J, Shen Y, Jiang Q, Zhang Q. Deep transfer learning in mechanical intelligent fault diagnosis: application and challenge.
Neural Process Lett 2022;54:2509–31. DOI
11. Yang X, Chi F, Shao S, Zhang Q. Bearing fault diagnosis under variable working conditions based on deep residual shrinkage networks
and transfer learning. J Sensors 2021;2021:1–13. DOI
12. Kouw WM, Loog M. A review of domain adaptation without target labels. IEEE Trans Pattern Anal Mach Intell 2021;43:766–85. DOI
13. Hershey JR, Olsen PA. Approximating the kullback leibler divergence between gaussian mixture models. In: 2007 IEEE International
Conference on Acoustics, Speech and Signal Processing - ICASSP '07. IEEE; 2007. DOI
14. Tzeng E, Hoffman J, Zhang N, Saenko K, Darrell T. Deep domain confusion: Maximizing for domain invariance. arXiv preprint
arXiv:14123474 2014.
15. Shen J, Qu Y, Zhang W, Yu Y. Wasserstein Distance Guided Representation Learning for Domain Adaptation. Proceedings of the AAAI
Conference on Artificial Intelligence 2018;32. DOI
16. Sun B, Saenko K. Deep CORAL: correlation alignment for deep domain adaptation. In: Lecture Notes in Computer Science. Springer
International Publishing; 2016. pp. 443–50. DOI
17. Qian C, Jiang Q, Shen Y, Huo C, Zhang Q. An intelligent fault diagnosis method for rolling bearings based on feature transfer with
improved DenseNet and joint distribution adaptation. Meas Sci Technol 2021;33:025101. DOI
18. Li X, Zhang W, Ding Q, Sun JQ. Multi-Layer domain adaptation method for rolling bearing fault diagnosis. Signal Process 2019;157:180–
97. DOI
19. Wang Y, Ning D, Lu J. A novel transfer capsule network based on domain-adversarial training for fault diagnosis. Neural Process Lett
2022;54:4171–88. DOI
20. Li W, Huang R, Li J, et al. A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: Theories, applications
and challenges. Mech Syst Signal Process 2022;167:108487. DOI
21. Yao S, Kang Q, Zhou M, Rawa MJ, Abusorrah A. A survey of transfer learning for machinery diagnostics and prognostics. Artificia Intell
Rev 2022;56:2871–922. DOI
22. Long M, CAO Z, Wang J, Jordan MI. Conditional adversarial domain adaptation. In: Bengio S, Wallach H, Larochelle H, Grauman K,
Cesa-Bianchi N, et al., editors. Advances in Neural Information Processing Systems. vol. 31. Curran Associates, Inc.; 2018. Available
from: https://proceedings.neurips.cc/paper_files/paper/2018/file/ab88b15733f543179858600245108dd8-Paper.pdf.
23. Borgwardt KM, Gretton A, Rasch MJ, et al. Integrating structured biological data by Kernel Maximum Mean Discrepancy. Bioinformatics
2006;22:e49–57. DOI