Page 244 - Read Online
P. 244

Page 12 of 15                                            Missale et al. Hepatoma Res 2018;4:22  I  http://dx.doi.org/10.20517/2394-5079.2018.72


               53.  Asadullah K, Sterry W, Volk HD. Interleukin-10 therapy-review of a new approach. Pharmacol Rev 2003;55:241-69.
               54.  Zheng LM, Ojcius DM, Garaud F, Roth C, Maxwell E, Li Z, Rong H, Chen J, Wang XY, Catino JJ, King I. Interleukin-10 inhibits tumor
                   metastasis through an NK cell-dependent mechanism. J Exp Med 1996;184:579-84.
               55.  Fujii S, Shimizu K, Shimizu T, Lotze MT. Interleukin-10 promotes the maintenance of antitumor CD8(þ) T-cell effector function in situ.
                   Blood 2001;98:2143-51.
               56.  Mumm JB, Emmerich J, Zhang X, Chan I, Wu L, Mauze S, Blaisdell S, Basham B, Dai J, Grein J, Sheppard C, Hong K, Cutler C, Turner S,
                   LaFace D, Kleinschek M, Judo M, Ayanoglu G, Langowski J, Gu D, Paporello B, Murphy E, Sriram V, Naravula S, Desai B, Medicherla S,
                   Seghezzi W, McClanahan T, Cannon-Carlson S, Beebe AM, Oft M. IL-10 elicits IFNγ-dependent tumor immune surveillance. Cancer Cell
                   2011;20:781-96.
               57.  Schon HT, Weiskirchen R. Immunomodulatory effects of transforming growth factor beta in the liver. Hepatobiliary Surg Nutr 2014;3:386-
                   406.
               58.  Gorelik L, Fields PE, Flavell RA. Cutting edge: TGF-beta inhibits Th type 2 development through inhibition of GATA-3 expression. J
                   Immunol 2000;165:4773-7.
               59.  Gorelik L, Constant S, Flavell RA. Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation. J
                   Exp Med 2002;195:1499-505.
               60.  Filippi CM, Juedes AE, Oldham JE, Ling E, Togher L, Peng Y, Flavell RA, von Herrath MG. Transforming growth factor-beta suppresses
                   the activation of CD8+ T-cells when naive but promotes their survival and function once antigen experienced: a two-faced impact on
                   autoimmunity. Diabetes 2008;57:2684-92.
               61.  McKarns SC, Schwartz RH. Distinct effects of TGF-beta 1 on CD4+ and CD8+ T cell survival, division, and IL-2 production: a role for T
                   cell intrinsic Smad3. J Immunol 2005;174:2071-83.
               62.  Thomas DA, Massague J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell
                   2005;8:369-80.
               63.  Khong HT, Restifo NP. Natural selection of tumor variants in the generation of ‘tumor escape’ phenotypes. Nat Immunol 2002;3:999-1005.
               64.  Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T. Activation of NK cells and T cells by NKG2D, a receptor for stress-
                   inducible MICA. Science 1999;285:727-9.
               65.  Kamimura H, Yamagiwa S, Tsuchiya A, Takamura M, Matsuda Y, Ohkoshi S, Inoue M, Wakai T, Shirai Y, Nomoto M, Aoyagi Y. Reduced
                   NKG2D ligand expression in hepatocellular carcinoma correlates with early recurrence. J Hepatol 2012;56:381-8.
               66.  Jinushi M, Takehara T, Tatsumi T, Hiramatsu N, Sakamori R, Yamaguchi S, Hayashi N. Impairment of natural killer cell and dendritic cell
                   functions by the soluble form of MHC class I-related chain A in advanced human hepatocellular carcinomas. J Hepatol 2005;43:1013-20.
               67.  Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science 2013;339:1546-58.
               68.  Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases—elimination,
                   equilibrium and escape. Curr Opin Immunol 2014;27:16-25.
               69.  Makarova-Rusher OV, Medina-Echeverz J, Duffy AG, Greten TF. The yin and yang of evasion and immune activation in HCC. J Hepatol
                   2015;62:1420-9.
               70.  Medina-Echeverz J, Eggert T, Han M, Greten TF. Hepatic myeloid-derived suppressor cells in cancer. Cancer Immunol Immunother
                   2015;64:931-40.
               71.  Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends
                   Immunol 2016;37:208-20.
               72.  Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009;9:162-74.
               73.  Draghiciu O, Lubbers J, Nijman HW, Daemen T. Myeloid derived suppressor cells-an overview of combat strategies to increase
                   immunotherapy efficacy. Oncoimmunology 2015;4:e954829.
               74.  Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S. Myeloid-derived suppressor cells inhibit T-cell activation by
                   depleting cystine and cysteine. Cancer Res 2010;70:68-77.
               75.  Lu T, Gabrilovich DI. Molecular pathways: tumor-infiltrating myeloid cells and reactive oxygen species in regulation of tumor
                   microenvironment. Clin Cancer Res 2012;18:4877-82.
               76.  Condamine T, Ramachandran I, Youn J-I, Gabrilovich DI. Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu Rev
                   Med 2015;66:97-110.
               77.  Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Krüger C, Manns MP, Greten TF, Korangy F. A new population of myeloid-derived
                   suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 2008;135:234-43.
               78.  Gao XH, Tian L, Wu J, Ma XL, Zhang CY, Zhou Y, Sun YF, Hu B, Qiu SJ, Zhou J, Fan J, Guo W, Yang XR. Circulating CD14+HLA-DR-/
                   low myeloid-derived suppressor cells predicted early recurrence of hepatocellular carcinoma after surgery. Hepatol Res 2017;47:1061-71.
               79.  Wang D, An G, Xie S, Yao Y, Feng G. The clinical and prognostic significance of CD14+HLA-DR-/low myeloid-derived suppressor cells in
                   hepatocellular carcinoma patients receiving radiotherapy. Tumor Biol 2016;37:10427-33.
               80.  Mizukoshi E, Yamashita T, Arai K, Terashima T, Kitahara M, Nakagawa H, Iida N, Fushimi K, Kaneko S. Myeloid derived suppressor
                   cells correlate with patient outcomes in hepatic arterial infusion chemotherapy for hepatocellular carcinoma. Cancer Immunol Immunother
                   2016;65:715-25.
               81.  Arihara F, Mizukoshi E, Kitahara M, Takata Y, Arai K, Yamashita T, Nakamoto Y, Kaneko S. Increase in CD14+HLA-DR −/low myeloid-
                   derived suppressor cells in hepatocellular carcinoma patients and its impact on prognosis. Cancer Immunol Immunother 2013;62:1421-30.
               82.  Kapanadze T, Gamrekelashvili J, Ma C, Chan C, Zhao F, Hewitt S, Zender L, Kapoor V, Felsher DW, Manns MP, Korangy F, Greten TF.
                   Regulation of accumulation and function of myeloid derived suppressor cells in different murine models of hepatocellular carcinoma. J
                   Hepatol 2013;59:1007-13.
               83.  Eggert T, Wolter K, Ji J, Ma C, Yevsa T, Klotz S, Medina-Echeverz J, Longerich T, Forgues M, Reisinger F, Heikenwalder M, Wang XW,
                   Zender L, Greten TF. Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression.
                   Cancer Cell 2016;30:533-47.
   239   240   241   242   243   244   245   246   247   248   249