Page 79 - Read Online
P. 79

Page 22 of 23              Casolino et al. Hepatoma Res 2021;7:76  https://dx.doi.org/10.20517/2394-5079.2021.79

               85.       Silverman IM, Murugesan K, Lihou CF, et al. Comprehensive genomic profiling in FIGHT-202 reveals the landscape of actionable
                    alterations in advanced cholangiocarcinoma. J Clin Oncol 2019;37:4080.  DOI
               86.       Cocco E, Schram AM, Kulick A, et al. Resistance to TRK inhibition mediated by convergent MAPK pathway activation. Nat Med
                    2019;25:1422-7.  DOI  PubMed  PMC
               87.       Misale S, Bozic I, Tong J, et al. Vertical suppression of the EGFR pathway prevents onset of resistance in colorectal cancers. Nat
                    Commun 2015;6:8305.  DOI  PubMed  PMC
               88.       Park JJH, Hsu G, Siden EG, Thorlund K, Mills EJ. An overview of precision oncology basket and umbrella trials for clinicians. CA
                    Cancer J Clin 2020;70:125-37.  DOI  PubMed  PMC
               89.       Hyman DM, Puzanov I, Subbiah V, et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med
                    2015;373:726-36.  DOI  PubMed  PMC
               90.       Subbiah V, Lassen U, Élez E, et al. Dabrafenib plus trametinib in patients with BRAFV600E-mutated biliary tract cancer (ROAR): a
                    phase 2, open-label, single-arm, multicentre basket trial. Lancet Oncol 2020;21:1234-43.  DOI  PubMed
               91.       Hainsworth JD, Meric-Bernstam F, Swanton C, et al. Targeted therapy for advanced solid tumors on the basis of molecular profiles:
                    results from MyPathway, an open-label, phase IIa multiple basket study. J Clin Oncol 2018;36:536-42.  DOI  PubMed
               92.       Robert C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commun 2020;11:3801.  DOI  PubMed  PMC
               93.       Kim RD, Chung V, Alese OB, et al. A phase 2 multi-institutional study of nivolumab for patients with advanced refractory biliary
                    tract cancer. JAMA Oncol 2020;6:888-94.  DOI  PubMed  PMC
               94.       Shen T, Zheng S, Geng L, et al. Experience with anti-PD-1 antibody, camrelizumab, monotherapy for biliary tract cancer patients and
                    literature review. Technol Cancer Res Treat 2020;19:1533033820979703.  DOI  PubMed  PMC
               95.       Marcus L, Lemery SJ, Keegan P, Pazdur R. FDA approval summary: pembrolizumab for the treatment of microsatellite instability-
                    high solid tumors. Clin Cancer Res 2019;25:3753-8.  DOI  PubMed
               96.       Piha-Paul SA, Oh DY, Ueno M, et al. Efficacy and safety of pembrolizumab for the treatment of advanced biliary cancer: results
                    from the KEYNOTE-158 and KEYNOTE-028 studies. Int J Cancer 2020;147:2190-8.  DOI  PubMed
               97.       Gani F, Nagarajan N, Kim Y, et al. Program death 1 immune checkpoint and tumor microenvironment: implications for patients with
                    intrahepatic cholangiocarcinoma. Ann Surg Oncol 2016;23:2610-7.  DOI  PubMed
               98.       Kitano  Y,  Yamashita  YI,  Nakao  Y,  et  al.  Clinical  significance  of  PD-L1  expression  in  both  cancer  and  stroma  cells  of
                    cholangiocarcinoma patients. Ann Surg Oncol 2020;27:599-607.  DOI  PubMed
               99.       Pinato DJ, Guerra N, Fessas P, et al. Immune-based therapies for hepatocellular carcinoma. Oncogene 2020;39:3620-37.  DOI
                    PubMed  PMC
               100.      Marabelle  A,  Le  DT,  Ascierto  PA,  et  al.  Efficacy  of  pembrolizumab  in  patients  with  noncolorectal  high  microsatellite
                    instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol 2020;38:1-10.  DOI
                    PubMed  PMC
               101.      Ueno M, Ikeda M, Morizane C, et al. Nivolumab alone or in combination with cisplatin plus gemcitabine in Japanese patients with
                    unresectable or recurrent biliary tract cancer: a non-randomised, multicentre, open-label, phase 1 study. Lancet Gastroenterol Hepatol
                    2019;4:611-21.  DOI  PubMed
               102.      Merck reports topline data for Bintrafusp alfa as second-line monotherapy treatment in biliary tract cancer. Available from:
                    https://www.merckgroup.com/en/news/bintrafusp-topline-data-biliary-tract-cancer-16-03-2021.html [Last accessed on 16 Nov 2021].
               103.      Merck  statement  on  phase  II  study  of  Bintrafusp  alfa  in  first-line  treatment  of  biliary  tract  cancer.  Available  from:
                    https://www.merckgroup.com/en/news/bintrafusp-alfa-update-23-08-2021.html [Last accessed on 16 Nov 2021].
               104.      Arkenau HT, Martin-Liberal J, Calvo E, et al. Ramucirumab plus pembrolizumab in patients with previously treated advanced or
                    metastatic biliary tract cancer: nonrandomized, open-label, phase I trial (JVDF). Oncologist 2018;23:1407-e136.  DOI  PubMed
                    PMC
               105.      Sulpice L, Rayar M, Desille M, et al. Molecular profiling of stroma identifies osteopontin as an independent predictor of poor
                    prognosis in intrahepatic cholangiocarcinoma. Hepatology 2013;58:1992-2000.  DOI  PubMed
               106.      Sulpice  L,  Desille  M,  Turlin  B,  et  al.  Gene  expression  profiling  of  the  tumor  microenvironment  in  human  intrahepatic
                    cholangiocarcinoma. Genom Data 2016;7:229-32.  DOI  PubMed  PMC
               107.      Louis C, Edeline J, Coulouarn C. Targeting the tumor microenvironment in cholangiocarcinoma: implications for therapy. Expert
                    Opin Ther Targets 2021;25:153-62.  DOI  PubMed
               108.      Brivio S, Cadamuro M, Strazzabosco M, Fabris L. Tumor reactive stroma in cholangiocarcinoma: The fuel behind cancer
                    aggressiveness. World J Hepatol 2017;9:455-68.  DOI  PubMed  PMC
               109.      Martín-Sierra C, Martins R, Laranjeira P, et al. Functional and phenotypic characterization of tumor-infiltrating leukocyte subsets and
                    their contribution to the pathogenesis of hepatocellular carcinoma and cholangiocarcinoma. Transl Oncol 2019;12:1468-79.  DOI
                    PubMed  PMC
               110.      Sirica AE, Gores GJ. Desmoplastic stroma and cholangiocarcinoma: clinical implications and therapeutic targeting. Hepatology
                    2014;59:2397-402.  DOI  PubMed  PMC
               111.      Zhou G, Sprengers D, Mancham S, et al. Reduction of immunosuppressive tumor microenvironment in cholangiocarcinoma by ex
                    vivo targeting immune checkpoint molecules. J Hepatol 2019;71:753-62.  DOI  PubMed
               112.      Chen Z, Guo P, Xie X, Yu H, Wang Y, Chen G. The role of tumour microenvironment: a new vision for cholangiocarcinoma. J Cell
                    Mol Med 2019;23:59-69.  DOI  PubMed  PMC
               113.      Raggi C, Correnti M, Sica A, et al. Cholangiocarcinoma stem-like subset shapes tumor-initiating niche by educating associated
                    macrophages. J Hepatol 2017;66:102-15.  DOI  PubMed  PMC
   74   75   76   77   78   79   80   81   82   83   84