Page 78 - Read Online
P. 78

Casolino et al. Hepatoma Res 2021;7:76  https://dx.doi.org/10.20517/2394-5079.2021.79  Page 21 of 23

               54.       Jiao Y, Pawlik TM, Anders RA, et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1
                    in intrahepatic cholangiocarcinomas. Nat Genet 2013;45:1470-3.  DOI  PubMed  PMC
               55.       Bogenberger JM, DeLeon TT, Arora M, Ahn DH, Borad MJ. Emerging role of precision medicine in biliary tract cancers. NPJ Precis
                    Oncol 2018;2:21.  DOI  PubMed  PMC
               56.       Wardell CP, Fujita M, Yamada T, et al. Genomic characterization of biliary tract cancers identifies driver genes and predisposing
                    mutations. J Hepatol 2018;68:959-69.  DOI  PubMed
               57.       Nakamura H, Arai Y, Totoki Y, et al. Genomic spectra of biliary tract cancer. Nat Genet 2015;47:1003-10.  DOI  PubMed
               58.       Chaisaingmongkol J, Budhu A, Dang H, et al; TIGER-LC Consortium. Common molecular subtypes among Asian hepatocellular
                    carcinoma and cholangiocarcinoma. Cancer Cell 2017;32:57-70.e3.  DOI  PubMed  PMC
               59.       cBioPortal for Cancer Genomics. Available from: https://www.cbioportal.org/study/summary?id=chol_nccs_2013 [Last accessed on
                    16 Nov 2021].
               60.       Arai Y, Totoki Y, Hosoda F, et al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of
                    cholangiocarcinoma. Hepatology 2014;59:1427-34.  DOI  PubMed
               61.       Graham RP, Barr Fritcher EG, Pestova E, et al. Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma.
                    Hum Pathol 2014;45:1630-8.  DOI  PubMed
               62.       Ross JS, Wang K, Gay L, et al. New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation
                    sequencing. Oncologist 2014;19:235-42.  DOI  PubMed  PMC
               63.       Sia D, Losic B, Moeini A, et al. Massive parallel sequencing uncovers actionable FGFR2-PPHLN1 fusion and ARAF mutations in
                    intrahepatic cholangiocarcinoma. Nat Commun 2015;6:6087.  DOI  PubMed
               64.       Voss JS, Holtegaard LM, Kerr SE, et al. Molecular profiling of cholangiocarcinoma shows potential for targeted therapy treatment
                    decisions. Hum Pathol 2013;44:1216-22.  DOI  PubMed
               65.       Wu YM, Su F, Kalyana-Sundaram S, et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov
                    2013;3:636-47.  DOI  PubMed  PMC
               66.       Borad MJ, Champion MD, Egan JB, et al. Integrated genomic characterization reveals novel, therapeutically relevant drug targets in
                    FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma. PLoS Genet 2014;10:e1004135.  DOI  PubMed  PMC
               67.       Putra J, de Abreu FB, Peterson JD, et al. Molecular profiling of intrahepatic and extrahepatic cholangiocarcinoma using next
                    generation sequencing. Exp Mol Pathol 2015;99:240-4.  DOI  PubMed  PMC
               68.       Zhu AX, Borger DR, Kim Y, et al. Genomic profiling of intrahepatic cholangiocarcinoma: refining prognosis and identifying
                    therapeutic targets. Ann Surg Oncol 2014;21:3827-34.  DOI  PubMed  PMC
               69.       Sia D, Hoshida Y, Villanueva A, et al. Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have
                    different outcomes. Gastroenterology 2013;144:829-40.  DOI  PubMed  PMC
               70.       Farshidfar F, Zheng S, Gingras MC, et al; Cancer Genome Atlas Network. Integrative genomic analysis of cholangiocarcinoma
                    identifies distinct IDH-mutant molecular profiles. Cell Rep 2017;18:2780-94.  DOI  PubMed  PMC
               71.       Nepal C, O'Rourke CJ, Oliveira DVNP, et al. Genomic perturbations reveal distinct regulatory networks in intrahepatic
                    cholangiocarcinoma. Hepatology 2018;68:949-63.  DOI  PubMed  PMC
               72.       Job S, Rapoud D, Dos Santos A, et al. Identification of four immune subtypes characterized by distinct composition and functions of
                    tumor microenvironment in intrahepatic cholangiocarcinoma. Hepatology 2020;72:965-81.  DOI  PubMed  PMC
               73.       Verlingue L, Malka D, Allorant A, et al. Precision medicine for patients with advanced biliary tract cancers: An effective strategy
                    within the prospective MOSCATO-01 trial. Eur J Cancer 2017;87:122-30.  DOI  PubMed
               74.       Lowery MA, Abou-alfa GK, Burris HA, et al. Phase I study of AG-120, an IDH1 mutant enzyme inhibitor: results from the
                    cholangiocarcinoma dose escalation and expansion cohorts. J Clin Oncol 2017;35:4015-4015.  DOI
               75.       Zhu  AX,  Macarulla  T,  Javle  MM,  et  al.  Final  overall  survival  efficacy  results  of  ivosidenib  for  patients  with  advanced
                    cholangiocarcinoma with IDH1 mutation: the phase 3 randomized clinical ClarIDHy trial. JAMA Oncol 2021.  DOI  PubMed  PMC
               76.       FDA approves ivosidenib for advanced or metastatic cholangiocarcinoma Available from: https://www.fda.gov/drugs/resources-
                    information-approved-drugs/fda-approves-ivosidenib-advanced-or-metastatic-cholangiocarcinoma [Last accessed on 16 Nov 2021].
               77.       Javle M, Lowery M, Shroff RT, et al. Phase II Study of BGJ398 in Patients With FGFR-Altered Advanced Cholangiocarcinoma. J
                    Clin Oncol 2018;36:276-82.  DOI  PubMed  PMC
               78.       Mazzaferro V, El-Rayes BF, Droz Dit Busset M, et al. Derazantinib (ARQ 087) in advanced or inoperable FGFR2 gene fusion-
                    positive intrahepatic cholangiocarcinoma. Br J Cancer 2019;120:165-71.  DOI  PubMed  PMC
               79.       Vogel A, Sahai V, Hollebecque A, et al. FIGHT-202: a phase II study of pemigatinib in patients (pts) with previously treated locally
                    advanced or metastatic cholangiocarcinoma (CCA). Ann Oncol 2019;30:v876.  DOI
               80.       Jain A, Borad MJ, Kelley RK, et al. Cholangiocarcinoma with FGFR genetic aberrations: a unique clinical phenotype. JCO Precision
                    Oncology 2018.  DOI
               81.       Javle MM, Sadeghi S, El-khoueiry AB, et al. A retrospective analysis of post second-line chemotherapy treatment outcomes for
                    patients with advanced or metastatic cholangiocarcinoma and FGFR2 fusions. J Clin Oncol 2020;38:4591.  DOI  PubMed
               82.       Abou-alfa GK, Sahai V, Hollebecque A, et al. Pemigatinib for previously treated locally advanced/metastatic cholangiocarcinoma
                    (CCA): update of FIGHT-202. J Clin Oncol 2021;39:4086.  DOI
               83.       Goyal L, Saha SK, Liu LY, et al. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients
                    with FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov 2017;7:252-63.  DOI  PubMed  PMC
               84.       Goyal L, Shi L, Liu LY, et al. TAS-120 overcomes resistance to ATP-competitive FGFR inhibitors in patients with FGFR2 fusion-
                    positive intrahepatic cholangiocarcinoma. Cancer Discov 2019;9:1064-79.  DOI  PubMed  PMC
   73   74   75   76   77   78   79   80   81   82   83