Page 26 - Read Online
P. 26

Page 14 of 16                                              Zhang et al. Hepatoma Res 2020;6:30  I  http://dx.doi.org/10.20517/2394-5079.2020.17


               41.  Toth CA, Thomas P. Liver endocytosis and Kupffer cells. Hepatology 1992;16:255-66.
               42.  Choi BI, Takayasu K, Han MC. Small hepatocellular carcinomas and associated nodular lesions of the liver: pathology, pathogenesis, and
                   imaging findings. AJR Am J Roentgenol 1993;160:1177-87.
               43.  Nassif A, Jia J, Keiser M, Oswald S, Modess C, et al. Visualization of hepatic uptake transporter function in healthy subjects by using
                   gadoxetic acid-enhanced MR imaging. Radiology 2012;264:741-50.
               44.  Fukuda K, Mori K, Hasegawa N, Nasu K, Ishige K, et al. Safety margin of radiofrequency ablation for hepatocellular carcinoma: a
                   prospective study using magnetic resonance imaging with superparamagnetic iron oxide. Jpn J Radiol 2019;37:555-63.
               45.  Kitao A, Matsui O, Yoneda N, Kozaka K, Shinmura R, et al. The uptake transporter OATP8 expression decreases during multistep
                   hepatocarcinogenesis: correlation with gadoxetic acid enhanced MR imaging. Eur Radiol 2011;21:2056-66.
               46.  Kogita S, Imai Y, Okada M, Kim T, Onishi H, et al. Gd-EOB-DTPA-enhanced magnetic resonance images of hepatocellular carcinoma:
                   correlation with histological grading and portal blood flow. Eur Radiol 2010;20:2405-13.
               47.  Zech CJ, Ba-Ssalamah A, Berg T, Chandarana H, Chau GY, et al. Consensus report from the 8th International Forum for Liver Magnetic
                   Resonance Imaging. Eur Radiol 2020;30:370-82.
               48.  Huang K, Dong Z, Cai H, Huang M, Peng Z, et al. Imaging biomarkers for well and moderate hepatocellular carcinoma: preoperative
                   magnetic resonance image and histopathological correlation. BMC Cancer 2019;19:364.
               49.  Zois CE, Harris AL. Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy. J
                   Mol Med (Berl) 2016;94:137-54.
               50.  Cervello M, Augello G, Cusimano A, Emma MR, Balasus D, et al. Pivotal roles of glycogen synthase-3 in hepatocellular carcinoma. Adv
                   Biol Regul 2017;65:59-76.
               51.  Chen R, Li J, Zhou X, Liu J, Huang G. Fructose-1,6-bisphosphatase 1 reduces (18)F FDG uptake in hepatocellular carcinoma. Radiology
                   2017;284:844-53.
               52.  Seo S, Hatano E, Higashi T, Hara T, Tada M, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography predicts tumor
                   differentiation, P-glycoprotein expression, and outcome after resection in hepatocellular carcinoma. Clin Cancer Res 2007;13:427-33.
                                                                                               18
               53.  Castilla-Lievre MA, Franco D, Gervais P, Kuhnast B, Agostini H, et al. Diagnostic value of combining  C-choline and  F-FDG PET/CT
                                                                                    11
                   in hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 2016;43:852-9.
               54.  Kong E, Chun KA, Cho IH. Quantitative assessment of simultaneous F-18 FDG PET/MRI in patients with various types of hepatic
                   tumors: correlation between glucose metabolism and apparent diffusion coefficient. PLoS One 2017;12:e0180184.
               55.  Zhang X, Li J, Shen F. Significance of presence of microvascular invasion in specimens obtained after surgical treatment of hepatocellular
                   carcinoma. J Gastroenterol Hepatol 2018;33:347-54.
               56.  Wu TH, Hatano E, Yamanaka K, Seo S, Taura K, et al. A non-smooth tumor margin on preoperative imaging predicts microvascular
                   invasion of hepatocellular carcinoma. Surg Today 2016;46:1275-81.
               57.  Renzulli M, Buonfiglioli F, Conti F, Brocchi S, Serio I, et al. Imaging features of microvascular invasion in hepatocellular carcinoma
                   developed after direct-acting antiviral therapy in HCV-related cirrhosis. Eur Radiol 2018;28:506-13.
               58.  Ma XL, Zhu J, Wu J, Tian L, Gao YY, et al. Significance of PIVKA-II levels for predicting microvascular invasion and tumor cell
                   proliferation in Chinese patients with hepatitis B virus-associated hepatocellular carcinoma. Oncol Lett 2018;15:8396-404.
               59.  Zheng J, Seier K, Gonen M, Balachandran VP, Kingham TP, et al. Utility of serum inflammatory markers for predicting microvascular
                   invasion and survival for patients with hepatocellular carcinoma. Ann Surg Oncol 2017;24:3706-14.
               60.  Long J, Guo H, Cui S, Zhang H, Liu X, et al. IL-35 expression in hepatocellular carcinoma cells is associated with tumor progression.
                   Oncotarget 2016;7:45678-86.
               61.  Fransvea E, Mazzocca A, Antonaci S, Giannelli G. Targeting transforming growth factor (TGF)-betaRI inhibits activation of beta1
                   integrin and blocks vascular invasion in hepatocellular carcinoma. Hepatology 2009;49:839-50.
               62.  Chou CT, Chen RC, Lin WC, Ko CJ, Chen CB, et al. Prediction of microvascular invasion of hepatocellular carcinoma: preoperative CT
                   and histopathologic correlation. AJR Am J Roentgenol 2014;203:W253-9.
               63.  Rhee H, An C, Kim HY, Yoo JE, Park YN, et al. Hepatocellular carcinoma with irregular rim-like arterial phase hyperenhancement: more
                   aggressive pathologic features. Liver Cancer 2019;8:24-40.
               64.  Chernyak V, Fowler KJ, Kamaya A, Kielar AZ, Elsayes KM, et al. Liver imaging reporting and data system (LI-RADS) Version 2018:
                   imaging of hepatocellular carcinoma in at-risk patients. Radiology 2018;289:816-30.
               65.  Zhao J, Li X, Zhang K, Yin X, Meng X, et al. Prediction of microvascular invasion of hepatocellular carcinoma with preoperative
                   diffusion-weighted imaging: A comparison of mean and minimum apparent diffusion coefficient values. Medicine 2017;96:e7754.
               66.  Wang WT, Yang L, Yang ZX, Hu XX, Ding Y, et al. Assessment of microvascular invasion of hepatocellular carcinoma with diffusion
                   kurtosis imaging. Radiology 2018;286:571-80.
               67.  Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion
                   by means of magnetic resonance imaging. Magn Reson Med 2005;53:1432-40.
               68.  Ahn SJ, Kim JH, Park SJ, Kim ST, Han JK. Hepatocellular carcinoma: preoperative gadoxetic acid-enhanced MR imaging can predict
                   early recurrence after curative resection using image features and texture analysis. Abdom Radiol (NY) 2019;44:539-48.
               69.  Lee S, Kim SH, Lee JE, Sinn DH, Park CK. Preoperative gadoxetic acid-enhanced MRI for predicting microvascular invasion in patients
                   with single hepatocellular carcinoma. J Hepatol 2017;67:526-34.
               70.  Ryu T, Takami Y, Wada Y, Tateishi M, Hara T, et al. A clinical scoring system for predicting microvascular invasion in patients with
                   hepatocellular carcinoma within the milan criteria. J Gastrointest Surg 2019;23:779-87.
               71.  Peng J, Zhang J, Zhang Q, Xu Y, Zhou J, et al. A radiomics nomogram for preoperative prediction of microvascular invasion risk in
   21   22   23   24   25   26   27   28   29   30   31