Page 28 - Read Online
P. 28

Page 16 of 16                                              Zhang et al. Hepatoma Res 2020;6:30  I  http://dx.doi.org/10.20517/2394-5079.2020.17


                   classification and relationship with HCC. Hepatology 2006;43:515-24.
               101. Kitao A, Matsui O, Yoneda N, Kozaka K, Kobayashi S, et al. Gadoxetic acid-enhanced MR imaging for hepatocellular carcinoma:
                   molecular and genetic background. Eur Radiol 2020; Epub ahead of print. doi: 10.1007/s00330-020-06687-y.
               102. Guzman G, Alagiozian-Angelova V, Layden-Almer JE, Layden TJ, Testa G, et al. p53, Ki-67, and serum alpha feto-protein as predictors
                   of hepatocellular carcinoma recurrence in liver transplant patients. Mod Pathol 2005;18:1498-503.
               103. Chen J, Chen C, Xia C, Huang Z, Zuo P, et al. Quantitative free-breathing dynamic contrast-enhanced MRI in hepatocellular carcinoma
                   using gadoxetic acid: correlations with Ki67 proliferation status, histological grades, and microvascular density. Abdom Radiol (NY)
                   2018;43:1393-403.
               104. Chen Y, Qin X, Long L, Zhang L, Huang Z, et al. Diagnostic value of Gd-EOB-DTPA-enhanced MRI for the expression of Ki67 and
                   microvascular density in hepatocellular carcinoma. J Magn Reson Imaging 2019; Epub ahead of print. doi: 10.1002/jmri.26974.
               105. Li Y, Chen J, Weng S, Sun H, Yan C, et al. Small hepatocellular carcinoma: using MRI to predict histological grade and Ki-67 expression.
                   Clin Radiol 2019;74:653.e1-653.e9.
               106. Surov A, Meyer HJ, Wienke A. Associations between apparent diffusion coefficient (ADC) and KI 67 in different tumors: a meta-analysis.
                   Part 1: ADCmean. Oncotarget 2017;8:75434-44.
               107. Ye Z, Jiang H, Chen J, Liu X, Wei Y, et al. Texture analysis on gadoxetic acid enhanced-MRI for predicting Ki-67 status in hepatocellular
                   carcinoma: a prospective study. Chin J Cancer Res 2019;31:806-17.
               108. Tsuchiya K, Komuta M, Yasui Y, Tamaki N, Hosokawa T, et al. Expression of keratin 19 is related to high recurrence of hepatocellular
                   carcinoma after radiofrequency ablation. Oncology 2011;80:278-88.
               109. Wang W, Gu D, Wei J, Ding Y, Yang L, et al. A radiomics-based biomarker for cytokeratin 19 status of hepatocellular carcinoma with
                   gadoxetic acid-enhanced MRI. 2020;30:3004-14.
               110.  Chen J, Wu Z, Xia C, Jiang H, Liu X, et al. Noninvasive prediction of HCC with progenitor phenotype based on gadoxetic acid-enhanced
                   MRI. Eur Radiol 2020;30:1232-42.
               111.  Hu XX, Wang WT, Yang L, Yang ZX, Liang HY, et al. MR features based on LI-RADS identify cytokeratin 19 status of hepatocellular
                   carcinomas. Eur J Radiol 2019;113:7-14.
               112.  Choi SY, Kim SH, Park CK, Min JH, Lee JE, et al. Imaging features of gadoxetic acid-enhanced and diffusion-weighted MR imaging for
                   identifying cytokeratin 19-positive hepatocellular carcinoma: a retrospective observational study. Radiology 2018;286:897-908.
               113.  Munz M, Baeuerle PA, Gires O. The emerging role of EpCAM in cancer and stem cell signaling. Cancer Res 2009;69:5627-9.
               114.  Zhou L, Zhu Y. The EpCAM overexpression is associated with clinicopathological significance and prognosis in hepatocellular carcinoma
                   patients: a systematic review and meta-analysis. Int J Surg 2018;56:274-80.
               115.  Ji J, Yamashita T, Budhu A, Forgues M, Jia HL, et al. Identification of microRNA-181 by genome-wide screening as a critical player in
                   EpCAM-positive hepatic cancer stem cells. Hepatology 2009;50:472-80.
   23   24   25   26   27   28   29   30   31   32   33