Page 93 - Read Online
P. 93

Page 6 of 7                                                       Qu et al. Hepatoma Res 2020;6:38  I  http://dx.doi.org/10.20517/2394-5079.2020.12

                   inflammatory dendritic cells through C-type lectin receptor SIGN-R1. Nat Microbiol 2019;4:1930-40.
               14.  Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, et al. Dendritic cells, monocytes and macrophages: a unified nomenclature
                   based on ontogeny. Nat Rev Immunol 2014;14:571-8.
               15.  Menezes S, Melandri D, Anselmi G, Perchet T, Loschko J, et al. The Heterogeneity of Ly6Chi Monocytes Controls Their Differentiation
                   into iNOS+ Macrophages or Monocyte-Derived Dendritic Cells. Immunity 2016;45:1205-18.
               16.  Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, et al; Immunological Genome Consortium. Gene-expression profiles and
                   transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 2012;13:1118-28.
               17.  Caminschi I, Proietto AI, Ahmet F, Kitsoulis S, Shin Teh J, et al. The dendritic cell subtype-restricted C-type lectin Clec9A is a target for
                   vaccine enhancement. Blood 2008;112:3264-73.
               18.  Bonifaz LC, Bonnyay DP, Charalambous A, Darguste DI, Fujii S, et al. In vivo targeting of antigens to maturing dendritic cells via the
                   DEC-205 receptor improves T cell vaccination. J Exp Med 2004;199:815-24.
               19.  Neubert K, Lehmann CH, Heger L, Baranska A, Staedtler AM, et al. Antigen delivery to CD11c+CD8- dendritic cells induces protective
                   immune responses against experimental melanoma in mice in vivo. J Immunol 2014;192:5830-8.
               20.  Dhodapkar MV, Sznol M, Zhao B, Wang D, Carvajal RD, et al. Induction of antigen-specific immunity with a vaccine targeting NY-
                   ESO-1 to the dendritic cell receptor DEC-205. Sci Transl Med 2014;6:232ra51.
               21.  Cruz FM, Colbert JD, Merino E, Kriegsman BA, Rock KL. The Biology and Underlying Mechanisms of Cross-Presentation of
                   Exogenous Antigens on MHC-I Molecules. Annu Rev Immunol 2017;35:149-76.
               22.  den Haan JM, Lehar SM, Bevan MJ. CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med
                   2000;192:1685-96.
               23.  Kitano M, Yamazaki C, Takumi A, Ikeno T, Hemmi H, et al. Imaging of the cross-presenting dendritic cell subsets in the skin-draining
                   lymph node. Proc Natl Acad Sci U S A 2016;113:1044-9.
               24.  Cancel JC, Crozat K, Dalod M, Mattiuz R. Are Conventional Type 1 Dendritic Cells Critical for Protective Antitumor Immunity and
                   How? Front Immunol 2019;10:9.
               25.  Böttcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, et al. NK Cells Stimulate Recruitment of cDC1 into the Tumor
                   Microenvironment Promoting Cancer Immune Control. Cell 2018;172:1022-1037.e14.
               26.  Schiavoni G, Mattei F, Sestili P, Borghi P, Venditti M, et al. ICSBP is essential for the development of mouse type I interferon-producing
                   cells and for the generation and activation of CD8alpha(+) dendritic cells. J Exp Med 2002;196:1415-25.
               27.  Hacker C, Kirsch RD, Ju XS, Hieronymus T, Gust TC, et al. Transcriptional profiling identifies Id2 function in dendritic cell development.
                   Nat Immunol 2003;4:380-6.
               28.  Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H, et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic
                   cells in cytotoxic T cell immunity. Science 2008;322:1097-100.
               29.  Kashiwada M, Pham NL, Pewe LL, Harty JT, Rothman PB. NFIL3/E4BP4 is a key transcription factor for CD8α  dendritic cell
                                                                                                +
                   development. Blood 2011;117:6193-7.
               30.  Bagadia P, Huang X, Liu TT, Durai V, Grajales-Reyes GE, et al. An Nfil3-Zeb2-Id2 pathway imposes Irf8 enhancer switching during
                   cDC1 development. Nat Immunol 2019;20:1174-85.
               31.  Grajales-Reyes GE, Iwata A, Albring J, Wu X, Tussiwand R, et al. Batf3 maintains autoactivation of Irf8 for commitment of a CD8α(+)
                   conventional DC clonogenic progenitor. Nat Immunol 2015;16:708-17.
               32.  Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L, et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as
                   putative equivalents of mouse CD8alpha+ dendritic cells. J Exp Med 2010;207:1261-71.
               33.  Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique
                   myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med 2010;207:1247-60.
               34.  Dorner BG, Dorner MB, Zhou X, Opitz C, Mora A, et al. Selective expression of the chemokine receptor XCR1 on cross-presenting
                   dendritic cells determines cooperation with CD8+ T cells. Immunity 2009;31:823-33.
               35.  Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA, et al. The XC chemokine receptor 1 is a conserved selective marker of
                   mammalian cells homologous to mouse CD8alpha+ dendritic cells. J Exp Med 2010;207:1283-92.
               36.  Engelhardt JJ, Boldajipour B, Beemiller P, Pandurangi P, Sorensen C, et al. Marginating dendritic cells of the tumor microenvironment
                   cross-present tumor antigens and stably engage tumor-specific T cells. Cancer Cell 2012;21:402-17.
               37.  Broz ML, Binnewies M, Boldajipour B, Nelson AE, Pollack JL, et al. Dissecting the tumor myeloid compartment reveals rare activating
                   antigen-presenting cells critical for T cell immunity. Cancer Cell 2014;26:638-52.
               38.  Salmon H, Idoyaga J, Rahman A, Leboeuf M, Remark R, et al. Expansion and Activation of CD103(+) Dendritic Cell Progenitors at the
                   Tumor Site Enhances Tumor Responses to Therapeutic PD-L1 and BRAF Inhibition. Immunity 2016;44:924-38.
               39.  Mittal D, Vijayan D, Putz EM, Aguilera AR, Markey KA, et al. Interleukin-12 from CD103+ Batf3-Dependent Dendritic Cells Required
                   for NK-Cell Suppression of Metastasis. Cancer Immunol Res 2017;5:1098-108.
               40.  Chen K, Wu Z, Zhao H, Wang Y, Ge Y, et al. XCL1/Glypican-3 Fusion Gene Immunization Generates Potent Antitumor Cellular
                   Immunity and Enhances Anti-PD-1 Efficacy. Cancer Immunol Res 2020;8:81-93.
               41.  Barry KC, Hsu J, Broz ML, Cueto FJ, Binnewies M, et al. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor
                   microenvironments. Nat Med 2018;24:1178-91.
               42.  Kastenmüller W, Brandes M, Wang Z, Herz J, Egen JG, et al. Peripheral prepositioning and local CXCL9 chemokine-mediated guidance
                   orchestrate rapid memory CD8+ T cell responses in the lymph node. Immunity 2013;38:502-13.
               43.  Spranger S, Dai D, Horton B, Gajewski TF. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T
   88   89   90   91   92   93   94   95   96   97   98