Page 121 - Read Online
P. 121
Thonglert et al. Hepatoma Res 2023;9:40 https://dx.doi.org/10.20517/2394-5079.2023.47 Page 21 of 23
24. Tse RV, Hawkins M, Lockwood G, et al. Phase I study of individualized stereotactic body radiotherapy for hepatocellular carcinoma
and intrahepatic cholangiocarcinoma. J Clin Oncol 2008;26:657-64. DOI
25. Weiner AA, Olsen J, Ma D, et al. Stereotactic body radiotherapy for primary hepatic malignancies-report of a phase I/II institutional
study. Radiother Oncol 2016;121:79-85. DOI PubMed PMC
26. Pascher A, Jonas S, Neuhaus P. Intrahepatic cholangiocarcinoma: indication for transplantation. J Hepatobiliary Pancreat Surg
2003;10:282-7. DOI PubMed
27. Chen X, Du J, Huang J, Zeng Y, Yuan K. Neoadjuvant and adjuvant therapy in intrahepatic cholangiocarcinoma. J Clin Transl
Hepatol 2022;10:553-63. DOI PubMed PMC
28. Akateh C, Ejaz AM, Pawlik TM, Cloyd JM. Neoadjuvant treatment strategies for intrahepatic cholangiocarcinoma. World J Hepatol
2020;12:693-708. DOI PubMed PMC
29. Sumiyoshi T, Shima Y, Okabayashi T, et al. Chemoradiotherapy for initially unresectable locally advanced cholangiocarcinoma.
World J Surg 2018;42:2910-8. DOI
30. Cho Y, Kim TH, Seong J. Improved oncologic outcome with chemoradiotherapy followed by surgery in unresectable intrahepatic
cholangiocarcinoma. Strahlenther Onkol 2017;193:620-9. DOI PubMed
31. Chuong MD, Kaiser A, Khan F, et al. Consensus report from the miami liver proton therapy conference. Front Oncol 2019;9:457.
DOI PubMed PMC
32. Wang X, Krishnan S, Zhang X, et al. Proton radiotherapy for liver tumors: dosimetric advantages over photon plans. Med Dosim
2008;33:259-67. DOI
33. Petersen JB, Lassen Y, Hansen AT, Muren LP, Grau C, Høyer M. Normal liver tissue sparing by intensity-modulated proton
stereotactic body radiotherapy for solitary liver tumours. Acta Oncol 2011;50:823-8. DOI PubMed
34. Engelsman M, Schwarz M, Dong L. Physics controversies in proton therapy. Semin Radiat Oncol 2013;23:88-96. DOI PubMed
35. Makita C, Nakamura T, Takada A, et al. Clinical outcomes and toxicity of proton beam therapy for advanced cholangiocarcinoma.
Radiat Oncol 2014;9:26. DOI PubMed PMC
36. Ohkawa A, Mizumoto M, Ishikawa H, et al. Proton beam therapy for unresectable intrahepatic cholangiocarcinoma. J Gastroenterol
Hepatol 2015;30:957-63. DOI
37. Shimizu S, Okumura T, Oshiro Y, et al. Clinical outcomes of previously untreated patients with unresectable intrahepatic
cholangiocarcinoma following proton beam therapy. Radiat Oncol 2019;14:241. DOI PubMed PMC
38. Hung SP, Huang BS, Hsieh CE, et al. Clinical outcomes of patients with unresectable cholangiocarcinoma treated with proton beam
therapy. Am J Clin Oncol 2020;43:180-6. DOI
39. Kim TH, Woo SM, Lee WJ, et al. Clinical efficacy of hypofractionated proton beam therapy for intrahepatic cholangiocarcinoma.
Cancers 2022;14:5561. DOI PubMed PMC
40. Tryggestad EJ, Liu W, Pepin MD, Hallemeier CL, Sio TT. Managing treatment-related uncertainties in proton beam radiotherapy for
gastrointestinal cancers. J Gastrointest Oncol 2020;11:212-24. DOI PubMed PMC
41. Bär E, Lalonde A, Royle G, Lu HM, Bouchard H. The potential of dual-energy CT to reduce proton beam range uncertainties. Med
Phys 2017;44:2332-44. DOI PubMed
42. Wroe AJ, Bush DA, Slater JD. Immobilization considerations for proton radiation therapy. Technol Cancer Res Treat 2014;13:217-26.
DOI PubMed
43. Rietzel E, Bert C. Respiratory motion management in particle therapy. Med Phys 2010;37:449-60. DOI PubMed
44. Liu W, Zhang X, Li Y, Mohan R. Robust optimization of intensity modulated proton therapy. Med Phys 2012;39:1079-91. DOI
PubMed PMC
45. Hu YH, Harper RH, Deiter NC, et al. Analysis of the rate of re-planning in spot-scanning proton therapy. Int J Part Ther 2022;9:49-58.
DOI PubMed PMC
46. Lomax AJ. Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2: the potential effects of inter-fraction and
inter-field motions. Phys Med Biol 2008;53:1043-56. DOI PubMed
47. Lomax AJ. Intensity modulated proton therapy and its sensitivity to treatment uncertainties 1: the potential effects of calculational
uncertainties. Phys Med Biol 2008;53:1027-42. DOI PubMed
48. Bert C, Grözinger SO, Rietzel E. Quantification of interplay effects of scanned particle beams and moving targets. Phys Med Biol
2008;53:2253-65. DOI PubMed
49. Zhang Y, Boye D, Tanner C, Lomax AJ, Knopf A. Respiratory liver motion estimation and its effect on scanned proton beam therapy.
Phys Med Biol 2012;57:1779-95. DOI PubMed
50. De Ruysscher D, Sterpin E, Haustermans K, Depuydt T. Tumour movement in proton therapy: solutions and remaining questions: a
review. Cancers 2015;7:1143. PubMed PMC
51. Lin B, Gao F, Yang Y, et al. FLASH radiotherapy: history and future. Front Oncol 2021;11:644400. DOI PubMed PMC
52. Montay-Gruel P, Acharya MM, Petersson K, et al. Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced
reactive oxygen species. Proc Natl Acad Sci USA 2019;116:10943-51. DOI
53. Vozenin MC, De Fornel P, Petersson K, et al. The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients.
Clin Cancer Res 2019;25:35-42. DOI
54. Favaudon V, Caplier L, Monceau V, et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal
and tumor tissue in mice. Sci Transl Med 2014;6:245ra93. DOI PubMed