Page 66 - Read Online
P. 66

Page 62                          Hunt et al. Extracell Vesicles Circ Nucleic Acids 2020;1:57-62  I  http://dx.doi.org/10.20517/evcna.2020.04

               Copyright
               © The Author(s) 2020.


               REFERENCES
               1.   Magnon C, Hall SJ, Lin J, et al. Autonomic nerve development contributes to prostate cancer progression. Science 2013;341:1236361.
               2.   Ayala GE, Wheeler TM, Shine HD, et al. In vitro dorsal root ganglia and human prostate cell line interaction: redefining perineural
                   invasion in prostate cancer. Prostate 2001;49:213-23.
               3.   Hayakawa Y, Sakitani K, Konishi M, et al. Nerve Growth Factor Promotes Gastric Tumorigenesis through Aberrant Cholinergic
                   Signaling. Cancer Cell 2017;31:21-34.
               4.   Zhao CM, Hayakawa Y, Kodama Y, et al. Denervation suppresses gastric tumorigenesis. Sci Transl Med 2014;6:250ra115.
               5.   Polli-lopes AC, Zucoloto S, de Queirós Cunha F, da Silva Figueiredo LA, Garcia SB. Myenteric denervation reduces the incidence of
                   gastric tumors in rats. Cancer Letters 2003;190:45-50.
               6.   Cavel O, Shomron O, Shabtay A, et al. Endoneurial macrophages induce perineural invasion of pancreatic cancer cells by secretion of
                   GDNF and activation of RET tyrosine kinase receptor. Cancer Res 2012;72:5733-43.
               7.   Peterson SC, Eberl M, Vagnozzi AN, et al. Basal cell carcinoma preferentially arises from stem cells within hair follicle and
                   mechanosensory niches. Cell Stem Cell 2015;16:400-12.
               8.   Keskinov AA, Tapias V, Watkins SC, Ma Y, Shurin MR, Shurin GV. Impact of the Sensory Neurons on Melanoma Growth In Vivo. PLoS
                   One 2016;11:e0156095.
               9.   Venkataramani V, Tanev DI, Strahle C, et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature
                   2019;573:532-8.
               10.  Venkatesh HS, Morishita W, Geraghty AC, et al. Electrical and synaptic integration of glioma into neural circuits. Nature 2019;573:539-45.
               11.  Venkatesh HS, Johung TB, Caretti V, et al. Neuronal Activity Promotes Glioma Growth through Neuroligin-3 Secretion. Cell
                   2015;161:803-16.
               12.  Hanoun M, Maryanovich M, Arnal-Estapé A, Frenette PS. Neural regulation of hematopoiesis, inflammation, and cancer. Neuron
                   2015;86:360-73.
               13.  Li HM, Ye ZH. Microenvironment of liver regeneration in liver cancer. Chin J Integr Med 2017;23:555-60.
               14.  Soysal SD, Tzankov A, Muenst SE. Role of the Tumor Microenvironment in Breast Cancer. Pathobiology 2015;82:142-52.
               15.  Wang JJ, Lei KF, Han F. Tumor microenvironment: recent advances in various cancer treatments. Eur Rev Med Pharmacol Sci
                   2018;22:3855-64.
               16.  Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett 2017;387:61-8.
               17.  Hollebecque A, Massard C, Soria JC. Vascular disrupting agents: a delicate balance between efficacy and side effects. Curr Opin Oncol
                   2012;24:305-15.
               18.  Amit M, Takahashi H, Dragomir MP, et al. Loss of p53 drives neuron reprogramming in head and neck cancer. Nature 2020;578:449-54.
               19.  I. Lexicomp, Propranolol: Drug information, UpToDate. (2020) 1-26. Available from https://www.uptodate.com/contents/propranolol-
                   drug-information?search=Propranolol&source=panel_search_result&selectedTitle=1~148&usage_type=panel&kp_tab=drug_
                   general&display_rank=1
               20.  Childers WK, Hollenbeak CS, Cheriyath P. β-Blockers Reduce Breast Cancer Recurrence and Breast Cancer Death: A Meta-Analysis.
                   Clin Breast Cancer 2015;15:426-31.
               21.  Thiele M, Albillos A, Abazi R, Wiest R, Gluud LL, Krag A. Non-selective beta-blockers may reduce risk of hepatocellular carcinoma: a
                   meta-analysis of randomized trials. Liver Int 2015;35:2009-16.
               22.  Qiao G, Chen M, Bucsek MJ, Repasky EA, Hylander BL. Adrenergic Signaling: A Targetable Checkpoint Limiting Development of the
                   Antitumor Immune Response. Front Immunol 2018;9:164.
               23.  Melhem-Bertrandt A, Chavez-Macgregor M, Lei X, et al. Beta-blocker use is associated with improved relapse-free survival in patients
                   with triple-negative breast cancer. J Clin Oncol 2011;29:2645-52.
               24.  Watkins JL, Thaker PH, Nick AM, et al. Clinical impact of selective and nonselective beta-blockers on survival in patients with ovarian
                   cancer. Cancer 2015;121:3444-51.
               25.  Grytli HH, Fagerland MW, Fosså SD, Taskén KA. Association Between Use of β-Blockers and Prostate Cancer–Specific Survival: A
                   Cohort Study of 3561 Prostate Cancer Patients with High-Risk or Metastatic Disease. European Urology 2014;65:635-41.
               26.  Hoshino A, Kim HS, Bojmar L, et al. Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell 2020;182:1044-
                   1061.e18.
               27.  Demir IE, Friess H, Ceyhan GO. Neural plasticity in pancreatitis and pancreatic cancer. Nat Rev Gastroenterol Hepatol 2015;12:649-59.
               28.  Murillo OD, Thistlethwaite W, Rozowsky J, et al. exRNA Atlas Analysis Reveals Distinct Extracellular RNA Cargo Types and Their
                   Carriers Present across Human Biofluids. Cell 2019;177:463-477.e15.
               29.  Schwarzenbach H. The clinical relevance of circulating, exosomal miRNAs as biomarkers for cancer. Expert Rev Mol Diagn
                   2015;15:1159-69.
               30.  Nedaeinia R, Manian M, Jazayeri MH, et al. Circulating exosomes and exosomal microRNAs as biomarkers in gastrointestinal cancer.
                   Cancer Gene Ther 2017;24:48-56.
               31.  Lynch C, Panagopoulou M, Gregory CD. Extracellular Vesicles Arising from Apoptotic Cells in Tumors: Roles in Cancer Pathogenesis
                   and Potential Clinical Applications. Front Immunol 2017;8:1174.
   61   62   63   64   65   66   67   68   69   70   71