Page 240 - Read Online
P. 240

Page 460           Shami-shah et al. Extracell Vesicles Circ Nucleic Acids 2023;4:447-60  https://dx.doi.org/10.20517/evcna.2023.14

                   2009;20:278-88.  DOI  PubMed  PMC
               47.      Sidhom K, Obi PO, Saleem A. A review of exosomal isolation methods: is size exclusion chromatography the best option? Int J Mol
                   Sci 2020;21:6466.  DOI  PubMed  PMC
               48.      Kaddour H, Tranquille M, Okeoma CM. The past, the present, and the future of the size exclusion chromatography in extracellular
                   vesicles separation. Viruses 2021;13:2272.  DOI  PubMed  PMC
               49.      Mol EA, Goumans MJ, Doevendans PA, Sluijter JPG, Vader P. Higher functionality of extracellular vesicles isolated using size-
                   exclusion chromatography compared to ultracentrifugation. Nanomedicine 2017;13:2061-5.  DOI  PubMed
               50.      Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP. Isolation of extracellular vesicles: general methodologies and latest
                   trends. Biomed Res Int 2018;2018:8545347.  DOI  PubMed  PMC
               51.      Van Deun J, Jo A, Li H, et al. Integrated dual-mode chromatography to enrich extracellular vesicles from plasma. Adv Biosyst
                   2020;4:e1900310.  DOI  PubMed  PMC
               52.      Jung J, Back W, Yoon J, et al. Dual size-exclusion chromatography for efficient isolation of extracellular vesicles from bone marrow
                   derived human plasma. Sci Rep 2021;11:217.  DOI  PubMed  PMC
               53.      Greening  DW,  Xu  R,  Ji  H,  Tauro  BJ,  Simpson  RJ.  A  protocol  for  exosome  isolation  and  characterization:  evaluation  of
                   ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. In: Posch A, editor. Proteomic profiling. New
                   York: Springer; 2015. pp. 179-209.  DOI
               54.      Shih CL, Chong KY, Hsu SC, et al. Development of a magnetic bead-based method for the collection of circulating extracellular
                   vesicles. N Biotechnol 2016;33:116-22.  DOI
               55.      Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S. Identification of Tim4 as a phosphatidylserine receptor. Nature
                   2007;450:435-9.  DOI  PubMed
               56.      Contreras-Naranjo JC, Wu HJ, Ugaz VM. Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized
                   medicine. Lab Chip 2017;17:3558-77.  DOI  PubMed  PMC
               57.      Raju D, Bathini S, Badilescu S, Ghosh A, Packirisamy M. Microfluidic platforms for the isolation and detection of exosomes: a brief
                   review. Micromachines 2022;13:730.  DOI  PubMed  PMC
               58.      Ayala-mar S, Perez-gonzalez VH, Mata-gómez MA, Gallo-villanueva RC, González-valdez J. Electrokinetically driven exosome
                   separation and concentration using dielectrophoretic-enhanced PDMS-Based microfluidics. Anal Chem 2019;91:14975-82.  DOI
                   PubMed
               59.      Lewis J, Alattar AA, Akers J, Carter BS, Heller M, Chen CC. A pilot proof-of-principle analysis Demonstrating Dielectrophoresis
                   (DEP) as a glioblastoma biomarker platform. Sci Rep 2019;9:10279.  DOI  PubMed  PMC
               60.      Kanwar SS, Dunlay CJ, Simeone DM, Nagrath S. Microfluidic device (ExoChip) for on-chip isolation, quantification and
                   characterization of circulating exosomes. Lab Chip 2014;14:1891-900.  DOI
               61.      Weng Y, Sui Z, Shan Y, et al. Effective isolation of exosomes with polyethylene glycol from cell culture supernatant for in-depth
                   proteome profiling. Analyst 2016;141:4640-6.  DOI
               62.      García-Romero N, Madurga R, Rackov G, et al. Polyethylene glycol improves current methods for circulating extracellular vesicle-
                   derived DNA isolation. J Transl Med 2019;17:75.  DOI  PubMed  PMC
               63.      Gámez-Valero A, Monguió-Tortajada M, Carreras-Planella L, Franquesa Ml, Beyer K, Borràs FE. Size-Exclusion chromatography-
                   based isolation minimally alters extracellular vesicles' characteristics compared to precipitating agents. Sci Rep 2016;6:33641.  DOI
                   PubMed  PMC
               64.      Konoshenko MY, Lekchnov EA, Bryzgunova OE, Kiseleva E, Pyshnaya IA, Laktionov PP. Isolation of extracellular vesicles from
                   biological fluids via the aggregation-precipitation approach for downstream miRNAs detection. Diagnostics 2021;11:384.  DOI
                   PubMed  PMC
               65.      Allelein S, Medina-perez P, Lopes ALH, et al. Potential and challenges of specifically isolating extracellular vesicles from
                   heterogeneous populations. Sci Rep 2021;11:11585.  DOI  PubMed  PMC
               66.      Couch Y, Buzàs EI, Di Vizio D, et al. A brief history of nearly EV-erything-The rise and rise of extracellular vesicles. J of
                   Extracellular Vesicle 2021;10:e12144.  DOI  PubMed  PMC
   235   236   237   238   239   240   241   242   243   244   245