Page 203 - Read Online
P. 203

Page 22                Asao et al. Extracell Vesicles Circ Nucleic Acids 2023;4:461-85  https://dx.doi.org/10.20517/evcna.2023.37

               76.  Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 1989;8:98-101.  PubMed
               77.       Lengel HB, Mastrogiacomo B, Connolly JG, et al. Genomic mapping of metastatic organotropism in lung adenocarcinoma. Cancer
                    Cell 2023;41:970-985.e3.  DOI  PubMed  PMC
               78.       Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for
                    cell-to-cell communication. Nat Cell Biol 2019;21:9-17.  DOI  PubMed
               79.       Wong GL, Abu Jalboush S, Lo HW. Exosomal microRNAs and organotropism in breast cancer metastasis. Cancers 2020;12:1827.
                    DOI  PubMed  PMC
               80.  Bartel DP. Metazoan microRNAs. Cell 2018;173:20-51.  DOI  PubMed  PMC
               81.       Tominaga N, Kosaka N, Ono M, et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable
                    of destructing blood-brain barrier. Nat Commun 2015;6:6716.  DOI  PubMed  PMC
               82.       Ye Y, Li SL, Ma YY, et al. Exosomal miR-141-3p regulates osteoblast activity to promote the osteoblastic metastasis of prostate
                    cancer. Oncotarget 2017;8:94834-49.  DOI  PubMed  PMC
               83.       Hashimoto K, Ochi H, Sunamura S, et al. Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic
                    microenvironment via targeting ARHGAP1 and FAM134A. Proc Natl Acad Sci U S A 2018;115:2204-9.  DOI  PubMed  PMC
               84.       Fong MY, Zhou W, Liu L, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote
                    metastasis. Nat Cell Biol 2015;17:183-94.  DOI  PubMed  PMC
               85.       Wu K, Feng J, Lyu F, et al. Exosomal miR-19a and IBSP cooperate to induce osteolytic bone metastasis of estrogen receptor-positive
                    breast cancer. Nat Commun 2021;12:5196.  DOI  PubMed  PMC
               86.       Zeng Z, Li Y, Pan Y, et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular
                    permeability and angiogenesis. Nat Commun 2018;9:5395.  DOI  PubMed  PMC
               87.  Gupta D, Zickler AM, El Andaloussi S. Dosing extracellular vesicles. Adv Drug Deliv Rev 2021;178:113961.  DOI  PubMed
               88.       Murillo OD, Thistlethwaite W, Rozowsky J, et al. exRNA atlas analysis reveals distinct extracellular RNA cargo types and their
                    carriers present across human biofluids. Cell 2019;177:463-77.e15.  DOI  PubMed  PMC
               89.       Sato S, Vasaikar S, Eskaros A, et al. EPHB2 carried on small extracellular vesicles induces tumor angiogenesis via activation of
                    ephrin reverse signaling. JCI Insight 2019;4:132447.  DOI  PubMed  PMC
               90.       Metharom P, Falasca M, Berndt MC. The history of armand trousseau and cancer-associated thrombosis. Cancers 2019;11:158.  DOI
                    PubMed  PMC
               91.  Varki A. Trousseau's syndrome: multiple definitions and multiple mechanisms. Blood 2007;110:1723-9.  DOI  PubMed  PMC
               92.  Dvorak HF, Quay SC, Orenstein NS, et al. Tumor shedding and coagulation. Science 1981;212:923-4.  DOI
               93.      Dvorak HF, Van DeWater L, Bitzer AM, et al. Procoagulant activity associated with plasma membrane vesicles shed by cultured
                    tumor cells. Cancer Res 1983;43:4434-42.  PubMed
               94.      Almeida VH, Rondon AMR, Gomes T, Monteiro RQ. Novel aspects of extracellular vesicles as mediators of cancer-associated
                    thrombosis. Cells 2019;8:716.  DOI  PubMed  PMC
               95.      Beck S, Hochreiter B, Schmid JA. Extracellular vesicles linking inflammation, cancer and thrombotic risks. Front Cell Dev Biol
                    2022;10:859863.  DOI  PubMed  PMC
               96.      Davila M, Amirkhosravi A, Coll E, et al. Tissue factor-bearing microparticles derived from tumor cells: impact on
                    coagulation activation. J Thromb Haemost 2008;6:1517-24.  PubMed
               97.      Geddings JE, Mackman N. Tumor-derived tissue factor-positive microparticles and venous thrombosis in cancer patients. Blood
                    2013;122:1873-80.  DOI  PubMed  PMC
               98.      Hisada Y, Mackman N. Cancer-associated pathways and biomarkers of venous thrombosis. Blood 2017;130:1499-506.  DOI
                    PubMed  PMC
               99.      Lazar S, Goldfinger LE. Platelets and extracellular vesicles and their cross talk with cancer. Blood 2021;137:3192-200.  DOI
                    PubMed  PMC
               100.     Lima LG, Leal AC, Vargas G, Porto-Carreiro I, Monteiro RQ. Intercellular transfer of tissue factor via the uptake of tumor-derived
                    microvesicles. Thromb Res 2013;132:450-6.  DOI  PubMed
               101.     Tesselaar ME, Romijn FP, Van Der Linden IK, Prins FA, Bertina RM, Osanto S. Microparticle-associated tissue factor activity: a link
                    between cancer and thrombosis? J Thromb Haemost 2007;5:520-7.  DOI  PubMed
               102.     Leal AC, Mizurini DM, Gomes T, et al. Tumor-derived exosomes induce the formation of neutrophil extracellular traps: implications
                    for the establishment of cancer-associated thrombosis. Sci Rep 2017;7:6438.  DOI  PubMed  PMC
               103.     Thålin C, Hisada Y, Lundström S, Mackman N, Wallén H. Neutrophil extracellular traps: villains and targets in arterial, venous, and
                    cancer-associated thrombosis. Arterioscler Thromb Vasc Biol 2019;39:1724-38.  DOI  PubMed  PMC
               104.     Zhao H, Yang L, Baddour J, et al. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. Elife
                    2016;5:e10250.  DOI  PubMed  PMC
               105.     Chen D, Li Y, Wang Y, Xu J. LncRNA HOTAIRM1 knockdown inhibits cell glycolysis metabolism and tumor progression by miR-
                    498/ABCE1 axis in non-small cell lung cancer. Genes Genomics 2021;43:183-94.  DOI  PubMed
               106.     Ding C, Xi G, Wang G, et al. Exosomal circ-MEMO1 promotes the progression and aerobic glycolysis of non-small cell lung cancer
                    through targeting MiR-101-3p/KRAS axis. Front Genet 2020;11:962.  DOI  PubMed  PMC
               107.        Gong Z, Li Q, Shi J, Liu ET, Shultz LD, Ren G. Lipid-laden lung mesenchymal cells foster breast cancer metastasis via metabolic
                    reprogramming of tumor cells and natural killer cells. Cell Metab 2022;34:1960-76.e9.  DOI  PubMed  PMC
   198   199   200   201   202   203   204   205   206   207   208