Page 148 - Read Online
P. 148

Page 14 of 16                        Feng et al. Chem Synth 2023;3:37  https://dx.doi.org/10.20517/cs.2023.26

                REFERENCES
               1.       Perego C, Millini R. Porous materials in catalysis: challenges for mesoporous materials†. Chem Soc Rev 2013;42:3956-76.
                   DOI PubMed
               2.       Du G, Xu Y, Zheng S, Xue H, Pang H. The state of research regarding ordered mesoporous materials in batteries.  Small
                   2019;15:e1804600.  DOI  PubMed
               3.       Li C, Li Q, Kaneti YV, Hou D, Yamauchi Y, Mai Y. Self-assembly of block copolymers towards mesoporous materials for energy
                   storage and conversion systems. Chem Soc Rev 2020;49:4681-736.  DOI
               4.       Li W, Liu J, Zhao D. Mesoporous materials for energy conversion and storage devices. Nat Rev Mater 2016;1:16023.  DOI
               5.       Zhuang Z, Li Y, Yu R, et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes.
                   Nat Catal 2022;5:300-10.  DOI
               6.       Singh G, Lee J, Karakoti A, et al. Emerging trends in porous materials for CO  capture and conversion. Chem Soc Rev 2020;49:4360-
                                                                      2
                   404.  DOI  PubMed
               7.       Yang X, Deng Y, Yang H, et al. Functionalization of mesoporous semiconductor metal oxides for gas sensing: recent advances and
                   emerging challenges. Adv Sci 2022;10:e2204810.  DOI  PubMed  PMC
               8.       Sun L, Lv H, Feng J, et al. Noble-metal-based hollow mesoporous nanoparticles: synthesis strategies and applications. Adv Mater
                   2022;34:2201954.  DOI
               9.       Liu Z, Du Y, Yu R, et al. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew
                   Chem Int Ed 2023;62:e202212653.  DOI  PubMed
               10.      Zhuang Z, Li Y, Li Y, et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides†.
                   Energy Environ Sci 2021;14:1016-28.  DOI
               11.     Ren Y, Ma Z, Bruce PG. Ordered mesoporous metal oxides: synthesis and applications. Chem Soc Rev 2012;41:4909-27.  DOI
               12.      Lin B, Yang G, Wang L. Stacking-layer-number dependence of water adsorption in 3D ordered close-packed g-C N  nanosphere
                                                                                                3
                                                                                                 4
                   arrays for photocatalytic hydrogen evolution. Angew Chem Int Ed 2019;58:4587.  DOI  PubMed
               13.      Hwang J, Kim S, Wiesner U, Lee J. Generalized access to mesoporous inorganic particles and hollow spheres from multicomponent
                   polymer blends. Adv Mater 2018;30:1801127.  DOI  PubMed
               14.     Tan C, Cao X, Wu XJ, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 2017;117:6225-331.  DOI
               15.     Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science 2004;306:666-9.  DOI
               16.     Jin H, Guo C, Liu X, et al. Emerging two-dimensional nanomaterials for electrocatalysis. Chem Rev 2018;118:6337-408.  DOI
               17.      Duan J, Chen S, Jaroniec M, Qiao SZ. Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS
                   Catal 2015;5:5207-34.  DOI
               18.      Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A. 2D transition metal dichalcogenides. Nat Rev Mater 2017;2:17033.  DOI
               19.      Zhou D, Li P, Lin X, et al. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and
                   tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chem Soc Rev 2021;50:8790-817.  DOI
               20.      VahidMohammadi A, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021;372:eabf1581.
                   DOI  PubMed
               21.      Park J, Lee J, Kim S, Hwang J. Graphene-based two-dimensional mesoporous materials: synthesis and electrochemical energy storage
                   applications. Materials 2021;14:2597.  DOI  PubMed  PMC
               22.      Kim S, Lim WG, Im H, et al. Polymer interface-dependent morphological transition toward two-dimensional porous inorganic
                   nanocoins as an ultrathin multifunctional layer for stable lithium-sulfur batteries. J Am Chem Soc 2021;143:15644-52.  DOI  PubMed
               23.      Qin J, Yang Z, Xing F, Zhang L, Zhang H, Wu Z. Two-dimensional mesoporous materials for energy storage and conversion: current
                   status, chemical synthesis and challenging perspectives. Electrochem Energy Rev 2023;6:9.  DOI
               24.      Kim S, Ju M, Lee J, Hwang J, Lee J. Polymer interfacial self-assembly guided two-dimensional engineering of hierarchically porous
                   carbon nanosheets. J Am Chem Soc 2020;142:9250-7.  DOI
               25.      Kim S, Hwang J, Lee J, Lee J. Polymer blend directed anisotropic self-assembly toward mesoporous inorganic bowls and nanosheets.
                   Sci Adv 2020;6:eabb3814.  DOI  PubMed  PMC
               26.     Ai Y, Li W, Zhao D. 2D mesoporous materials. Natl Sci Rev 2022;9:nwab108.  DOI  PubMed  PMC
               27.      Deng Y, Wei J, Sun Z, Zhao D. Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers†.
                   Chem Soc Rev 2013;42:4054-70.  DOI
               28.      Lakhi KS, Park DH, Al-Bahily K, et al. Mesoporous carbon nitrides: synthesis, functionalization, and applications. Chem Soc Rev
                   2017;46:72-101.  DOI
               29.      Zhang H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015;9:9451-69.  DOI  PubMed
               30.      Zhang X, Hou L, Ciesielski A, Samorì P. 2D materials beyond graphene for high-performance energy storage applications. Adv Energy
                   Mater 2016;6:1600671.  DOI
               31.      Duan  L,  Wang  C,  Zhang  W,  et  al.  Interfacial  assembly  and  applications  of  functional  mesoporous  materials.  Chem  Rev
                   2021;121:14349-429.  DOI
               32.      Wang L, Urbas AM, Li Q. Nature-inspired emerging chiral liquid crystal nanostructures: from molecular self-assembly to DNA
                   mesophase and nanocolloids. Adv Mater 2020;32:1801335.  DOI  PubMed
               33.     Zhu H, Sun S, Hao J, et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis†. Energy Environ
   143   144   145   146   147   148   149   150   151   152   153