Page 187 - Read Online
P. 187

Page 8 of 9                            He et al. Chem Synth 2023;3:35  https://dx.doi.org/10.20517/cs.2023.14

               Manuscript writing and picture drawing, Supplementary Materials: Chen X
               Synthesizing the substrates and data review: Xia S
               Co-directing this project: Zhong G
               Directing this project and revising the manuscript: Yang L


               Availability of data and materials
               Not applicable.

               Financial support and sponsorship
               We gratefully acknowledge the National Natural Science Foundation of China (Grant 22271071); the
               Natural Science Foundation of Zhejiang Province (Grant LY20B020010); and the Foundation of Shanghai
               Key Laboratory for Molecular Engineering of Chiral Drugs for financial support (Grant SMECD202300X).


               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.

               Consent for publication
               Not applicable.

               Copyright
               © The Author(s) 2023.

               REFERENCES
               1.       Norton RS, Wells RJ. A series of chiral polybrominated biindoles from the marine blue-green alga rivularia firma. application of
                   carbon-13 NMR spin-lattice relaxation data and carbon-13-proton coupling constants to structure elucidation. J Am Chem Soc
                   1982;104:3628-35.  DOI
               2.       Jiang F, Chen KW, Wu P, Zhang YC, Jiao Y, Shi F. A strategy for synthesizing axially chiral naphthyl-indoles: catalytic asymmetric
                   addition reactions of racemic substrates. Angew Chem Int Ed Engl 2019;58:15104-10.  DOI
               3.       Wang C, Li T, Liu S, et al. Axially chiral aryl-alkene-indole framework: a nascent member of the atropisomeric family and its catalytic
                   asymmetric construction. Chin J Chem 2020;38:543-52.  DOI
               4.       Chen KW, Chen ZH, Yang S, Wu SF, Zhang YC, Shi F. Organocatalytic atroposelective synthesis of N-N Axially chiral indoles and
                   pyrroles by de novo ring formation. Angew Chem Int Ed Engl 2022;61:e202116829.  DOI
               5.       Yang Y, Xu Y, Yue Y, et al. Investigate natural product indolmycin and the synthetically improved analogue toward antimycobacterial
                   agents. ACS Chem Biol 2022;17:39-53.  DOI
               6.       Humphrey GR, Kuethe JT. Practical methodologies for the synthesis of indoles. Chem Rev 2006;106:2875-911.  DOI  PubMed
               7.       Bandini M, Eichholzer A. Catalytic functionalization of indoles in a new dimension. Angew Chem Int Ed Engl 2009;48:9608-44.  DOI
               8.       Kochanowska-Karamyan AJ, Hamann MT. Marine indole alkaloids: potential new drug leads for the control of depression and anxiety.
                   Chem Rev 2010;110:4489-97.  DOI  PubMed  PMC
               9.       Sun C, Tian W, Lin Z, Qu X. Biosynthesis of pyrroloindoline-containing natural products. Nat Prod Rep 2022;39:1721-65.  DOI
                   PubMed
               10.      Yepremyan A, Minehan TG. Total synthesis of indole-3-acetonitrile-4-methoxy-2-C-β-D-glucopyranoside. Proposal for structural
                   revision of the natural product. Org Biomol Chem 2012;10:5194-6.  DOI  PubMed  PMC
               11.      Bera S, Daniliuc CG, Studer A. Oxidative N-heterocyclic carbene catalyzed dearomatization of indoles to spirocyclic indolenines with
                   a quaternary carbon stereocenter. Angew Chem Int Ed Engl 2017;56:7402-6.  DOI  PubMed
               12.      Xie D, Yang L, Lin Y, et al. Rapid access to spirocylic oxindoles: application of asymmetric N-heterocyclic carbene-catalyzed [3 + 3]
                   cycloaddition of imines to oxindole-derived enals. Org Lett 2015;17:2318-21.  DOI
               13.      Zhu SY, Zhang H, Ma QW, Liu D, Hui XP. Oxidative NHC catalysis: direct activation of β sp(3) carbons of saturated acid chlorides.
                   Chem Commun 2019;55:298-301.  DOI
               14.      Xu J, Zhang W, Liu Y, et al. Formal [3 + 3] annulation of isatin-derived 2-bromoenals with 1,3-dicarbonyl compounds enabled by
                   Lewis acid/N-heterocyclic carbene cooperative catalysis. RSC Adv 2016;6:18601-6.  DOI
   182   183   184   185   186   187   188   189   190   191   192