Page 18 - Read Online
P. 18
Page 12 of 13 Cheng et al. Chem Synth 2023;3:13 https://dx.doi.org/10.20517/cs.2022.43
24. Yu C, Wong KMC, Chan KHY, Yam VWW. Polymer-induced self-assembly of alkynylplatinum(II) terpyridyl complexes by
metal···metal/π···π interactions. Angew Chem Int Ed 2005;44:791-4. DOI PubMed
25. Yu C, Chan KHY, Wong KMC, Yam VWW. Single-stranded nucleic acid-induced helical self-assembly of alkynylplatinum(II)
terpyridyl complexes. Proc Natl Acad Sci USA 2006;103:19652-7. DOI PubMed PMC
26. Leung SYL, Lam WH, Yam VWW. Dynamic scaffold of chiral binaphthol derivatives with the alkynylplatinum(II) terpyridine moiety.
Proc Natl Acad Sci USA 2013;110:7986-91. DOI PubMed PMC
27. Wong KMC, Yam VWW. Luminescence platinum(II) terpyridyl complexes - From fundamental studies to sensory functions. Coord
Chem Rev 2007;251:2477-88. DOI
28. Po C, Tam AYY, Wong KMC, Yam VWW. Supramolecular self-assembly of amphiphilic anionic platinum(II) complexes: a
correlation between spectroscopic and morphological properties. J Am Chem Soc 2011;133:12136-43. DOI PubMed
29. Wong KMC, Yam VWW. Self-assembly of luminescent alkynylplatinum(II) terpyridyl complexes: modulation of photophysical
properties through aggregation behavior. Acc Chem Res 2011;44:424-34. DOI PubMed
30. Cheung ASH, Leung SYL, Hau FKW, Yam VWW. Supramolecular self-assembly of amphiphilic alkynylplatinum(II) 2,6-bis(N-
alkylbenzimidazol-2’-yl)pyridine complexes. Chem Res Chin Univ 2021;37:1079-84. DOI
31. Zheng X, Chan MHY, Chan AKW, et al. Elucidation of the key role of Pt···Pt interactions in the directional self-assembly of
platinum(II) complexes. Proc Natl Acad Sci USA 2022;119:e2116543119. DOI PubMed PMC
32. Tam AYY, Wong KMC, Yam VWW. Unusual luminescence enhancement of metallogels of alkynylplatinum(II) 2,6-bis(N-
alkylbenzimidazol-2’-yl)pyridine complexes upon a gel-to-sol phase transition at elevated temperatures. J Am Chem Soc
2009;131:6253-60. DOI
8 10
33. Yam VWW, Au VKM, Leung SYL. Light-emitting self-assembled materials based on d and d transition metal complexes. Chem
Rev 2015;115:7589-728. DOI PubMed
34. Yam VWW, Chan AKW, Hong EYH. Charge-transfer processes in metal complexes enable luminescence and memory functions. Nat
Rev Chem 2020;4:528-41. DOI
35. Chan MHY, Yam VWW. Toward the design and construction of supramolecular functional molecular materials based on metal-metal
interactions. J Am Chem Soc 2022;144:22805-25. DOI PubMed
36. Chan K, Chung CYS, Yam VWW. Conjugated polyelectrolyte-induced self-assembly of alkynylplatinum(II) 2,6-bis(benzimidazol-2’-
yl)pyridine complexes. Chem Eur J 2015;21:16434-47. DOI PubMed
37. Chan K, Chung CYS, Yam VWW. Parallel folding topology-selective label-free detection and monitoring of conformational and
topological changes of different G-quadruplex DNAs by emission spectral changes via FRET of mPPE-Ala-Pt(II) complex ensemble.
Chem Sci 2016;7:2842-55. DOI PubMed PMC
38. Chan CWT, Chan K, Yam VWW. Induced self-assembly and disassembly of alkynylplatinum(II) 2,6-bis(benzimidazol-2’-yl)pyridine
complexes with charge reversal properties: “proof-of-principle” demonstration of ratiometric förster resonance energy transfer sensing
of pH. ACS Appl Mater Interfaces 2022;Online ahead of print. DOI PubMed
39. Sonogashira K, Takahashi S, Hagihara N. A new extended chain polymer, poly[trans-bis(tri-n-butylphosphine)platinum 1,4-
butadiynediyl]. Macromolecules 1977;10:879-80. DOI
40. Takahashi S, Kariya M, Yatake T, Sonogashira K, Hagihara N. Studies of poly-yne polymers containing transition metals in the main
chain. 2. Synthesis of poly[trans-bis(tri-n-butylphosphine)platinum 1,4-butadiynediyl] and evidence of a rodlike structure.
Macromolecules 1978;11:1063-6. DOI
41. Beljonne D, Wittmann HF, Köhler A, et al. Spatial extent of the singlet and triplet excitons in transition metal-containing poly-ynes. J
Chem Phys 1996;105:3868-77. DOI
42. Younus M, Köhler A, Cron S, et al. Synthesis, electrochemistry, and spectroscopy of blue platinum(II) polyynes and diynes. Angew
Chem Int Ed Engl 1998;37:3036-9. DOI PubMed
43. Chawdhury N, Köhler A, Friend RH, et al. Evolution of lowest singlet and triplet excited states with number of thienyl rings in
platinum poly-ynes. J Chem Phys 1999;110:4963-70. DOI
44. Rogers JE, Cooper TM, Fleitz PA, Glass DJ, Mclean DG. Photophysical characterization of a series of platinum(II)-containing
phenyl−ethynyl oligomers. J Phys Chem A 2002;106:10108-15. DOI
45. Liu Y, Jiang S, Glusac K, Powell DH, Anderson DF, Schanze KS. Photophysics of monodisperse platinum-acetylide oligomers:
delocalization in the singlet and triplet excited states. J Am Chem Soc 2002;124:12412-3. DOI PubMed
46. Schanze KS, Silverman EE, Zhao X. Intrachain triplet energy transfer in platinum-acetylide copolymers. J Phys Chem B
2005;109:18451-9. DOI PubMed
47. Clem TA, Kavulak DFJ, Westling EJ, Fréchet JMJ. Cyclometalated platinum polymers: synthesis, photophysical properties, and
photovoltaic performance. Chem Mater 2010;22:1977-87. DOI
48. Thomas III SW, Yagi S, Swager TM. Towards chemosensing phosphorescent conjugated polymers: cyclometalated platinum(II)
poly(phenylene)s. J Mater Chem 2005;15:2829. DOI
49. Wang P, Liu S, Lin Z, et al. Design and synthesis of conjugated polymers containing Pt(II) complexes in the side-chain and their
application in polymer memory devices. J Mater Chem 2012;22:9576. DOI
50. Lu W, Law YC, Han J, et al. A dicationic organoplatinum(II) complex containing a bridging 2,5-bis-(4-ethynylphenyl)-
[1,3,4]oxadiazole ligand behaves as a phosphorescent gelator for organic solvents. Chem Asian J 2008;3:59-69. DOI PubMed
51. Liu B, Yu W, Lai Y, Huang W. Blue-light-emitting fluorene-based polymers with tunable electronic properties. Chem Mater