Page 49 - Read Online
P. 49
Chen et al. Complex Eng Syst 2023;3:8 I http://dx.doi.org/10.20517/ces.2022.50 Page 15 of 15
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2023.
REFERENCES
1. Zhuang W, Li S, Zhang X, et al. A survey of powertrain configuration studies on hybrid electric vehicles. Appl Energy 2020;262:114553.
DOI
2. Yang C, Shi Y, Li L, Wang X. Efficient mode transition control for parallel hybrid electric vehicle with adaptive dual-loop control frame-
work. IEEE Trans Veh Technol 2020;69:1519-32. DOI
3. Jing H, Jia F, Liu Z. Multi-objective optimal control allocation for an over-actuated electric vehicle. IEEE Access 2018;6:4824-33. DOI
4. Liu J, Zhuang W, Zhong H, Wang L, Chen H, Tan C. Integrated energy-oriented lateral stability control of a four-wheel-independent-drive
electric vehicle. Sci China Technol Sci 2019;62:2170-83. DOI
5. Ma Y, Chen J, Zhu X, Xu Y. Lateral stability integrated with energy efficiency control for electric vehicles. Mech Syst Signal Process
2019;127:1-15. DOI
6. Kobayashi T, Katsuyama E, Sugiura H, Ono E, Yamamoto M. Efficient direct yaw moment control: tyre slip power loss minimisation for
four-independent wheel drive vehicle. Veh Syst Dyn 2018;56:719-33. DOI
7. Zhao J, Wong PK, Ma X, Xie Z. Chassis integrated control for active suspension, active front steering and direct yaw moment systems
using hierarchical strategy. Veh Syst Dyn 2017;55:72-103. DOI
8. Song J. Active front wheel steering model and controller for integrated dynamics control systems. Int J Automot Technol 2016;17:265-72.
DOI
9. Zhang H, Wang J. Robust gain-scheduling control of vehicle lateral dynamics through AFS/DYC. In Modeling, dynamics and control of
electrified vehicles. Amsterdam, The Netherlands: Elsevier; 2018. pp. 339-68. DOI
10. Lenzo B, Bucchi F, Sorniotti A, Frendo F. On the handling performance of a vehicle with different front-to-rear wheel torque distributions.
Veh Syst Dyn 2019;57:1685-704. DOI
11. Ni J, Wang W, Hu J, Xiang C. Relaxed static stability for four-wheel independently actuated ground vehicle. Mech Syst Signal Process
2019;127:35-49. DOI
12. Wu D, Ding H, Du C. Dynamics characteristics analysis and control of FWID EV. Int J Automot Technol 2018;19:135-46. DOI
13. Chen Y, Hedrick JK, Guo K. A novel direct yaw moment controller for in-wheel motor electric vehicles. Veh Syst Dyn 2013;51:925-42.
DOI
14. Guo L, Ge P, Sun D. Torque Distribution Algorithm for Stability Control of Electric Vehicle Driven by Four In-Wheel Motors Under
Emergency Conditions. IEEE Access 2019;7:104737-48. DOI
15. Alipour H, Bannae Sharifian MB, Sabahi M. A modified integral sliding mode control to lateral stabilisation of 4-wheel independent drive
electric vehicles. Veh Syst Dyn 2014;52:1584-606. DOI
16. Chae M, Hyun Y, Yi K, Nam K. Dynamic Handling Characteristics Control of an in-Wheel-Motor Driven Electric Vehicle Based on
Multiple Sliding Mode Control Approach. IEEE Access 2019;7:132448-58. DOI
17. Hu C, Wang R, Yan F, Huang Y, Wang H, Wei C. Differential Steering Based Yaw Stabilization Using ISMC for Independently Actuated
Electric Vehicles. IEEE Trans Intell Transport Syst 2018;19:627-38. DOI
18. Peng H, Wang W, Xiang C, Li L, Wang X. Torque Coordinated Control of Four In-Wheel Motor Independent-Drive Vehicles With Con-
sideration of the Safety and Economy. IEEE Trans Veh Technol 2019;68:9604-18. DOI
19. Zhu M, Chen H, Xiong G. A model predictive speed tracking control approach for autonomous ground vehicles. Mech Syst Signal Process
2017;87:138-52. DOI
20. Pacejka HB, Bakker E. The magic formula tyre model. Veh Syst Dyn 1992;21:1-18. DOI
21. Camacho EF, Alba CB. Model predictive control. Springer Science & Berlin, Germany: Business Media, 2013.