Page 41 - Read Online
P. 41
Page 10 of 10 Bao et al. Complex Eng Syst 2022;2:16 I http://dx.doi.org/10.20517/ces.2022.30
8. Lyon RJ, Stappers B, Cooper S, Brooke JM, Knowles JD. Fifty years of pulsar candidate selection: from simple filters to a new principled
real-time classification approach. Monthly Notices of the Royal Astronomical Society 2016;459:1104–23. DOI
9. Lyon RJ, Brooke J, Knowles JD, Stappers BW. A study on classification in imbalanced and partially-labelled data streams. In: 2013 IEEE
International Conference on Systems, Man, and Cybernetics. IEEE; 2013. pp. 1506–11. DOI
10. Hewish A, Bell SJ, Pilkington JD, Scott PF, Collins RA. 74. Observation of a Rapidly Pulsating Radio Source. In: A Source Book in
Astronomy and Astrophysics, 1900–1975. Boston: Harvard University Press; 2013. pp. 498–504. DOI
11. Lyon RJ, Brooke J, Knowles JD, Stappers BW. Hellinger distance trees for imbalanced streams. In: 2014 22nd International Conference
on Pattern Recognition. IEEE; 2014. pp. 1969–74. DOI
12. Shamsolmoali P, Zareapoor M, Granger E, et al. Image synthesis with adversarial networks: a comprehensive survey and case studies.
Inform Fusion 2021;72:126–46. DOI
13. Guo P, Duan F, Wang P, et al. Pulsar candidate classification using generative adversary networks. Monthly Notices of the Royal Astro-
nomical Society 2019;490:5424–39. DOI
14. Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:151106434 2015.
15. Zhang CJ, Shang ZH, Chen WM, Xie L, Miao XH. A review of research on pulsar candidate recognition based on machine learning. Pro
Compu Sci 2020;166:534–38. DOI
16. Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks. In: International conference on machine learning. PMLR;
2017. pp. 214–23.
17. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision
and pattern recognition; 2016. pp. 770–78. DOI
18. He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks. In: European conference on computer vision. Berlin: Springer;
2016. pp. 630–45. DOI
19. Bousquet O, Gelly S, Tolstikhin I, Simon-Gabriel CJ, Schoelkopf B. From optimal transport to generative modeling: the VEGAN cook-
book. arXiv preprint arXiv:170507642 2017. DOI
20. Goodfellow I, Pouget-abadie J, Mirza M, et al. Generative adversarial networks. Commun ACM 2020;63:139-44. DOI
21. Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. Computer
ence 2015. DOI
22. LeCun Y, Boser B, Denker JS, et al. Backpropagation applied to handwritten zip code recognition. Neural Computation 1989;1:541–51.
DOI
23. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436. DOI
24. Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint arXiv:14126980 2014. DOI
25. He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceed-
ings of the IEEE International Conference on Computer Vision; 2015. pp. 1026–34. DOI
26. Naoyuki Y, Keitaro T, Hiroki K, et al. Artificial neural networks for selection of pulsar candidates from radio continuum surveys. Monthly
Notices of the Royal Astronomical Society 2020;494:1035–44. DOI