Page 41 - Read Online
P. 41

Page 10 of 10                   Bao et al. Complex Eng Syst 2022;2:16  I http://dx.doi.org/10.20517/ces.2022.30



               8.  Lyon RJ, Stappers B, Cooper S, Brooke JM, Knowles JD. Fifty years of pulsar candidate selection: from simple filters to a new principled
                  real-time classification approach. Monthly Notices of the Royal Astronomical Society 2016;459:1104–23. DOI
               9.  Lyon RJ, Brooke J, Knowles JD, Stappers BW. A study on classification in imbalanced and partially-labelled data streams. In: 2013 IEEE
                  International Conference on Systems, Man, and Cybernetics. IEEE; 2013. pp. 1506–11. DOI
               10. Hewish A, Bell SJ, Pilkington JD, Scott PF, Collins RA. 74. Observation of a Rapidly Pulsating Radio Source. In: A Source Book in
                  Astronomy and Astrophysics, 1900–1975. Boston: Harvard University Press; 2013. pp. 498–504. DOI
               11. Lyon RJ, Brooke J, Knowles JD, Stappers BW. Hellinger distance trees for imbalanced streams. In: 2014 22nd International Conference
                  on Pattern Recognition. IEEE; 2014. pp. 1969–74. DOI
               12. Shamsolmoali P, Zareapoor M, Granger E, et al. Image synthesis with adversarial networks: a comprehensive survey and case studies.
                  Inform Fusion 2021;72:126–46. DOI
               13. Guo P, Duan F, Wang P, et al. Pulsar candidate classification using generative adversary networks. Monthly Notices of the Royal Astro-
                  nomical Society 2019;490:5424–39. DOI
               14. Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv
                  preprint arXiv:151106434 2015.
               15. Zhang CJ, Shang ZH, Chen WM, Xie L, Miao XH. A review of research on pulsar candidate recognition based on machine learning. Pro
                  Compu Sci 2020;166:534–38. DOI
               16. Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks. In: International conference on machine learning. PMLR;
                  2017. pp. 214–23.
               17. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision
                  and pattern recognition; 2016. pp. 770–78. DOI
               18. He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks. In: European conference on computer vision. Berlin: Springer;
                  2016. pp. 630–45. DOI
               19. Bousquet O, Gelly S, Tolstikhin I, Simon-Gabriel CJ, Schoelkopf B. From optimal transport to generative modeling: the VEGAN cook-
                  book. arXiv preprint arXiv:170507642 2017. DOI
               20. Goodfellow I, Pouget-abadie J, Mirza M, et al. Generative adversarial networks. Commun ACM 2020;63:139-44. DOI
               21. Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. Computer
                  ence 2015. DOI
               22. LeCun Y, Boser B, Denker JS, et al. Backpropagation applied to handwritten zip code recognition. Neural Computation 1989;1:541–51.
                  DOI
               23. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436. DOI
               24. Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint arXiv:14126980 2014. DOI
               25. He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceed-
                  ings of the IEEE International Conference on Computer Vision; 2015. pp. 1026–34. DOI
               26. Naoyuki Y, Keitaro T, Hiroki K, et al. Artificial neural networks for selection of pulsar candidates from radio continuum surveys. Monthly
                  Notices of the Royal Astronomical Society 2020;494:1035–44. DOI
   36   37   38   39   40   41   42   43   44   45   46