Page 96 - Read Online
P. 96
Gutierrez et al. Cancer Drug Resist 2021;4:414-23 I http://dx.doi.org/10.20517/cdr.2020.113 Page 422
temozolomide-resistant gliomas. Cell Death Dis 2013;4:e876.
21. Bengtsson D, Schrøder HD, Andersen M, et al. Long-term outcome and MGMT as a predictive marker in 24 patients with atypical
pituitary adenomas and pituitary carcinomas given treatment with temozolomide. J Clin Endocrinol Metab 2015;100:1689-98.
22. Esteller M, Garcia-Foncillas J, Andion E, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to
alkylating agents. N Engl J Med 2000;343:1350-4.
23. Middlemas DS, Stewart CF, Kirstein MN, et al. Biochemical correlates of temozolomide sensitivity in pediatric solid tumor xenograft
models. Clin Cancer Res 2000;6:998-1007.
24. Bruheim S, Bruland OS, Breistol K, Maelandsmo GM, Fodstad O. Human osteosarcoma xenografts and their sensitivity to chemotherapy.
Pathol Oncol Res 2004;10:133-41.
25. Pećina-Šlaus N, Kafka A, Salamon I, Bukovac A. Mismatch repair pathway, genome stability and cancer. Front Mol Biosci 2020;7:122.
26. Fishel R, Lescoe MK, Rao MR, et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon
cancer. Cell 1993;75:1027-38.
27. Leach FS, Nicolaides NC, Papadopoulos N, et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell
1993;75:1215-25.
28. Young J, Leggett B, Gustafson C, et al. Genomic instability occurs in colorectal carcinomas but not in adenomas. Hum Mutat 1993;2:351-
4.
29. Felsberg J, Thon N, Eigenbrod S, et al. Promoter methylation and expression of MGMT and the DNA mismatch repair genes MLH1,
MSH2, MSH6 and PMS2 in paired primary and recurrent glioblastomas. Int J Cancer 2011;129:659-70.
30. von Bueren AO, Bacolod MD, Hagel C, et al. Mismatch repair deficiency: a temozolomide resistance factor in medulloblastoma cell lines
that is uncommon in primary medulloblastoma tumours. Br J Cancer 2012;107:1399-408.
31. Shinsato Y, Furukawa T, Yunoue S, et al. Reduction of MLH1 and PMS2 confers temozolomide resistance and is associated with
recurrence of glioblastoma. Oncotarget 2013;4:2261-70.
32. Taverna P, Liu L, Hanson AJ, Monks A, Gerson SL. Characterization of MLH1 and MSH2 DNA mismatch repair proteins in cell lines of
the NCI anticancer drug screen. Cancer Chemother Pharmacol 2000;46:507-16.
33. Helleman J, van Staveren IL, Dinjens WN, et al. Mismatch repair and treatment resistance in ovarian cancer. BMC Cancer 2006;6:201.
34. Gee ME, Faraahi Z, McCormick A, Edmondson RJ. DNA damage repair in ovarian cancer: unlocking the heterogeneity. J Ovarian Res
2018;11:50.
35. Karran P, Bignami M. Self-destruction and tolerance in resistance of mammalian cells to alkylation damage. Nucleic Acids Res
1992;20:2933-40.
36. Day RS, 3rd, Babich MA, Yarosh DB, Scudiero DA. The role of O6-methylguanine in human cell killing, sister chromatid exchange
induction and mutagenesis: a review. J Cell Sci Suppl 1987;6:333-53.
37. de Wind N, Dekker M, Berns A, Radman M, te Riele H. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency,
methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 1995;82:321-30.
38. Kawate H, Sakumi K, Tsuzuki T, et al. Separation of killing and tumorigenic effects of an alkylating agent in mice defective in two of the
DNA repair genes. Proc Natl Acad Sci U S A 1998;95:5116-20.
39. Takagi Y, Takahashi M, Sanada M, Ito R, Yamaizumi M, Sekiguchi M. Roles of MGMT and MLH1 proteins in alkylation-induced
apoptosis and mutagenesis. DNA Repair (Amst) 2003;2:1135-46.
40. Duncan T, Trewick SC, Koivisto P, Bates PA, Lindahl T, Sedgwick B. Reversal of DNA alkylation damage by two human dioxygenases.
Proc Natl Acad Sci U S A 2002;99:16660-5.
41. Koivisto P, Robins P, Lindahl T, Sedgwick B. Demethylation of 3-methylthymine in DNA by bacterial and human DNA dioxygenases. J
Biol Chem 2004;279:40470-4.
42. Aas PA, Otterlei M, Falnes PO, et al. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA.
Nature 2003;421:859-63.
43. Shen L, Song CX, He C, Zhang Y. Mechanism and function of oxidative reversal of DNA and RNA methylation. Annu Rev Biochem
2014;83:585-614.
44. Ciesielski P, Jóźwiak P, Krześlak A. TET proteins and epigenetic modifications in cancers. Postepy Hig Med Dosw (Online)
2015;69:1371-83.
45. Fedeles BI, Singh V, Delaney JC, Li D, Essigmann JM. The AlkB Family of Fe(II)/alpha-Ketoglutarate-dependent Dioxygenases:
Repairing Nucleic Acid Alkylation Damage and Beyond. J Biol Chem 2015;290:20734-42.
46. Guengerich FP. Introduction: Metals in Biology: alpha-Ketoglutarate/Iron-Dependent Dioxygenases. J Biol Chem 2015;290:20700-1.
47. Hashimoto H, Zhang X, Vertino PM, Cheng X. The Mechanisms of Generation, Recognition, and Erasure of DNA 5-Methylcytosine and
Thymine Oxidations. J Biol Chem 2015;290:20723-33.
48. Nay SL, Lee DH, Bates SE, O’Connor TR. Alkbh2 protects against lethality and mutation in primary mouse embryonic fibroblasts. DNA
Repair (Amst) 2012;11:502-10.
49. Furrer A, van Loon B. Handling the 3-methylcytosine lesion by six human DNA polymerases members of the B-, X- and Y-families.
Nucleic Acids Res 2014;42:553-66.
50. Lee DH, Jin SG, Cai S, Chen Y, Pfeifer GP, O’Connor TR. Repair of methylation damage in DNA and RNA by mammalian AlkB
homologues. J Biol Chem 2005;280:39448-59.
51. Pilžys T, Marcinkowski M, Kukwa W, et al. ALKBH overexpression in head and neck cancer: potential target for novel anticancer
therapy. Sci Rep 2019;9:13249.