Page 48 - Read Online
P. 48
Juhlin. Cancer Drug Resist 2020;3:992-1000 I http://dx.doi.org/10.20517/cdr.2020.66 Page 999
treatment and survival in the Netherlands over 3 decades. Eur J Endocrinol 2020;183:203-9.
5. Saini S, Tulla K, Maker AV, Burman KD, Prabhakar BS. Therapeutic advances in anaplastic thyroid cancer: a current perspective. Mol
Cancer 2018;17:154.
6. Alobuia W, Gillis A, Kebebew E. Contemporary management of anaplastic thyroid cancer. Curr Treat Options Oncol 2020;21:78.
7. Molinaro E, Romei C, Biagini A, et al. Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies. Nat Rev
Endocrinol 2017;13:644-60.
8. Nylén C, Mechera R, Maréchal-Ross I, et al. Molecular Markers Guiding Thyroid Cancer Management. Cancers (Basel) 2020;12.
9. Stenman A, Hellgren LS, Jatta K, et al. Metastatic anaplastic thyroid carcinoma in complete remission: morphological, molecular, and
clinical work-up of a rare case. Endocr Pathol 2020;31:77-83.
10. Rosove MH, Peddi PF, Glaspy JA. BRAF V600E inhibition in anaplastic thyroid cancer. N Engl J Med 2013;368:684-5.
11. Xu B, Fuchs T, Dogan S, et al. Dissecting anaplastic thyroid carcinoma: a comprehensive clinical, histologic, immunophenotypic, and
molecular study of 360 cases. Thyroid 2020; doi: 10.1089/thy.2020.0086.
12. Wallin G, Bäckdahl M, Tallroth-Ekman E, et al. Co-existent anaplastic and well differentiated thyroid carcinomas: a nuclear DNA study.
Eur J Surg Oncol 1989;15:43-8.
13. Kunstman JW, Juhlin CC, Goh G, et al. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome
sequencing. Hum Mol Genet 2015;24:2318-29.
14. Landa I, Ibrahimpasic T, Boucai L, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J
Clin Invest 2016;126:1052-66.
15. Shi X, Liu R, Qu S, et al. Association of TERT promoter mutation 1,295,228 C>T with BRAF V600E mutation, older patient age, and
distant metastasis in anaplastic thyroid cancer. J Clin Endocrinol Metab 2015;100:E632-7.
16. Oishi N, Kondo T, Ebina A, et al. Molecular alterations of coexisting thyroid papillary carcinoma and anaplastic carcinoma: identification
of TERT mutation as an independent risk factor for transformation. Mod Pathol 2017;30:1527-37.
17. Capdevila J, Mayor R, Mancuso FM, et al. Early evolutionary divergence between papillary and anaplastic thyroid cancers. Ann Oncol
2018;29:1454-60.
18. Dong W, Nicolson NG, Choi J, et al. Clonal evolution analysis of paired anaplastic and well-differentiated thyroid carcinomas reveals
shared common ancestor. Genes Chromosomes Cancer 2018;57:645-52.
19. Karger S, Krause K, Engelhardt C, et al. Distinct pattern of oxidative DNA damage and DNA repair in follicular thyroid tumours. J Mol
Endocrinol 2012;48:193-202.
20. Santos LS, Gomes BC, Bastos HN, et al. Thyroid cancer: the quest for genetic susceptibility involving DNA repair genes. Genes (Basel)
2019;10.
21. Siołek M, Cybulski C, Gąsior-Perczak D, et al. CHEK2 mutations and the risk of papillary thyroid cancer. Int J Cancer 2015;137:548-52.
22. Wójcicka A, Czetwertyńska M, Świerniak M, et al. Variants in the ATM-CHEK2-BRCA1 axis determine genetic predisposition and
clinical presentation of papillary thyroid carcinoma. Genes Chromosomes Cancer 2014;53:516-23.
23. Javid M, Sasanakietkul T, Nicolson NG, et al. DNA mismatch repair deficiency promotes genomic instability in a subset of papillary
thyroid cancers. World J Surg 2018;42:358-66.
24. Genutis LK, Tomsic J, Bundschuh RA, et al. Microsatellite instability occurs in a subset of follicular thyroid cancers. Thyroid
2019;29:523-9.
25. Wong KS, Lorch JH, Alexander EK, et al. Clinicopathologic features of mismatch repair-deficient anaplastic thyroid carcinomas. Thyroid
2019;29:666-73.
26. Paulsson JO, Backman S, Wang N, et al. Whole-genome sequencing of synchronous thyroid carcinomas identifies aberrant DNA repair in
thyroid cancer dedifferentiation. J Pathol 2020;250:183-94.
27. Deshwar AG, Vembu S, Yung CK, et al. PhyloWGS: reconstructing subclonal composition and evolution from whole-genome sequencing
of tumors. Genome Biol 2015;16:35.
28. Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell 2017;66:801-17.
29. Raetz AG, David SS. When you’re strange: Unusual features of the MUTYH glycosylase and implications in cancer. DNA Repair (Amst)
2019;80:16-25.
30. Chintakuntlawar AV, Rumilla KM, Smith CY, et al. Expression of PD-1 and PD-L1 in anaplastic thyroid cancer patients treated with
multimodal therapy: results from a retrospective study. J Clin Endocrinol Metab 2017;102:1943-50.
31. Iyer PC, Dadu R, Gule-Monroe M, et al. Salvage pembrolizumab added to kinase inhibitor therapy for the treatment of anaplastic thyroid
carcinoma. J Immunother Cancer 2018;6:68.
32. Capdevila J, Wirth LJ, Ernst T, et al. PD-1 blockade in anaplastic thyroid carcinoma. J Clin Oncol 2020;38:2620-7.
33. Kim ST, Klempner SJ, Park SH, et al. Correlating programmed death ligand 1 (PD-L1) expression, mismatch repair deficiency, and
outcomes across tumor types: implications for immunotherapy. Oncotarget 2017;8:77415-23.
34. Liu Y, Chen L, Zhang S, et al. Somatic mutations in genes associated with mismatch repair predict survival in patients with metastatic
cancer receiving immune checkpoint inhibitors. Oncol Lett 2020;20:27.
35. Hsiehchen D, Hsieh A, Samstein RM, et al. DNA repair gene mutations as predictors of immune checkpoint inhibitor response beyond
tumor mutation burden. Cell Rep Med 2020;1.
36. Samstein RM, Lee CH, Shoushtari AN, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types.
Nat Genet 2019;51:202-6.
37. Ribic CM, Sargent DJ, Moore MJ, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant