Page 26 - Read Online
P. 26

Page 788                                           Fabbrizi et al. Cancer Drug Resist 2020;3:775-90  I  http://dx.doi.org/10.20517/cdr.2020.49

                   factors for oxygen-dependent proteolysis. Nature 1999;399:271-5.
               39.  Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 2006;70:1469-80.
               40.  Dengler VL, Galbraith M, Espinosa JM. Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol 2014;49:1-15.
               41.  Knuth J, Sharma SJ, Wurdemann N, Holler C, Garvalov BK, et al. Hypoxia-inducible factor-1alpha activation in HPV-positive head and
                   neck squamous cell carcinoma cell lines. Oncotarget 2017;8:89681-91.
               42.  Bencokova Z, Kaufmann MR, Pires IM, Lecane PS, Giaccia AJ, et al. ATM activation and signaling under hypoxic conditions. Mol Cell
                   Biol 2009;29:526-37.
               43.  Melvin A, Rocha S. Chromatin as an oxygen sensor and active player in the hypoxia response. Cell Signal 2012;24:35-43.
               44.  Luoto KR, Kumareswaran R, Bristow RG. Tumor hypoxia as a driving force in genetic instability. Genome Integr 2013;4:5.
               45.  Hammond EM, Dorie MJ, Giaccia AJ. ATR/ATM targets are phosphorylated by ATR in response to hypoxia and ATM in response to
                   reoxygenation. J Biol Chem 2003;278:12207-13.
               46.  Bristow RG, Hill RP. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 2008;8:180-92.
               47.  Hammond EM, Denko NC, Dorie MJ, Abraham RT, Giaccia AJ. Hypoxia links ATR and p53 through replication arrest. Mol Cell Biol
                   2002;22:1834-43.
               48.  Sorensen BS, Busk M, Olthof N, Speel EJ, Horsman MR, et al. Radiosensitivity and effect of hypoxia in HPV positive head and neck
                   cancer cells. Radiother Oncol 2013;108:500-5.
               49.  Hauth F, Toulany M, Zips D, Menegakis A. Cell-line dependent effects of hypoxia prior to irradiation in squamous cell carcinoma lines.
                   Clin Transl Radiat Oncol 2017;5:12-9.
               50.  Gottgens EL, Bussink J, Ansems M, Hammond EM, Span PN. AKT inhibition as a strategy for targeting hypoxic HPV-positive HNSCC.
                   Radiother Oncol 2020;149:1-7.
               51.  Nowsheen S, Bonner JA, Yang ES. The poly(ADP-Ribose) polymerase inhibitor ABT-888 reduces radiation-induced nuclear EGFR and
                   augments head and neck tumor response to radiotherapy. Radiother Oncol 2011;99:331-8.
               52.  Wurster S, Hennes F, Parplys AC, Seelbach JI, Mansour WY, et al. PARP1 inhibition radiosensitizes HNSCC cells deficient in
                   homologous recombination by disabling the DNA replication fork elongation response. Oncotarget 2016;7:9732-41.
               53.  Hernandez AL, Young CD, Bian L, Weigel K, Nolan K, et al. PARP inhibition enhances radiotherapy of SMAD4-deficient human head
                   and neck squamous cell carcinomas in experimental models. Clin Cancer Res 2020;26:3058-70.
               54.  Guster JD, Weissleder SV, Busch CJ, Kriegs M, Petersen C, et al. The inhibition of PARP but not EGFR results in the radiosensitization
                   of HPV/p16-positive HNSCC cell lines. Radiother Oncol 2014;113:345-51.
               55.  Wang L, Cao J, Wang X, Lin E, Wang Z, et al. Proton and photon radiosensitization effects of niraparib, a PARP-1/-2 inhibitor, on human
                   head and neck cancer cells. Head Neck 2020;42:2244-56.
               56.  Molkentine JM, Molkentine DP, Bridges KA, Xie T, Yang L, et al. Targeting DNA damage response in head and neck cancers through
                   abrogation of cell cycle checkpoints. Int J Radiat Biol 2020:1-8.
               57.  Pires IM, Olcina MM, Anbalagan S, Pollard JR, Reaper PM, et al. Targeting radiation-resistant hypoxic tumour cells through ATR
                   inhibition. Br J Cancer 2012;107:291-9.
               58.  Dillon MT, Barker HE, Pedersen M, Hafsi H, Bhide SA, et al. Radiosensitization by the ATR inhibitor AZD6738 through generation of
                   acentric micronuclei. Mol Cancer Ther 2017;16:25-34.
               59.  Hafsi H, Dillon MT, Barker HE, Kyula JN, Schick U, et al. Combined ATR and DNA-PK inhibition radiosensitizes tumor cells
                   independently of their p53 status. Front Oncol 2018;8:245.
               60.  Dohmen AJC, Qiao X, Duursma A, Wijdeven RH, Lieftink C, et al. Identification of a novel ATM inhibitor with cancer cell specific
                   radiosensitization activity. Oncotarget 2017;8:73925-37.
               61.  Lee TW, Wong WW, Dickson BD, Lipert B, Cheng GJ, et al. Radiosensitization of head and neck squamous cell carcinoma lines by
                   DNA-PK inhibitors is more effective than PARP-1 inhibition and is enhanced by SLFN11 and hypoxia. Int J Radiat Biol 2019:1-16.
               62.  Borst GR, McLaughlin M, Kyula JN, Neijenhuis S, Khan A, et al. Targeted radiosensitization by the Chk1 inhibitor SAR-020106. Int J
                   Radiat Oncol Biol Phys 2013;85:1110-8.
               63.  Barker HE, Patel R, McLaughlin M, Schick U, Zaidi S, et al. CHK1 inhibition radiosensitizes head and neck cancers to paclitaxel-based
                   chemoradiotherapy. Mol Cancer Ther 2016;15:2042-54.
               64.  Sankunny M, Parikh RA, Lewis DW, Gooding WE, Saunders WS, et al. Targeted inhibition of ATR or CHEK1 reverses radioresistance in
                   oral squamous cell carcinoma cells with distal chromosome arm 11q loss. Genes Chromosomes Cancer 2014;53:129-43.
               65.  Busch CJ, Kriegs M, Laban S, Tribius S, Knecht R, et al. HPV-positive HNSCC cell lines but not primary human fibroblasts are
                   radiosensitized by the inhibition of Chk1. Radiother Oncol 2013;108:495-9.
               66.  Busch CJ, Kroger MS, Jensen J, Kriegs M, Gatzemeier F, et al. G2-checkpoint targeting and radiosensitization of HPV/p16-positive
                   HNSCC cells through the inhibition of Chk1 and Wee1. Radiother Oncol 2017;122:260-6.
               67.  Gottgens EL, Bussink J, Leszczynska KB, Peters H, Span PN, et al. Inhibition of CDK4/CDK6 enhances radiosensitivity of HPV
                   negative head and neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys 2019;105:548-58.
               68.  Dassonville O, Formento JL, Francoual M, Ramaioli A, Santini J, et al. Expression of epidermal growth factor receptor and survival in
                   upper aerodigestive tract cancer. J Clin Oncol 1993;11:1873-8.
               69.  Magne N, Pivot X, Bensadoun RJ, Guardiola E, Poissonnet G, et al. The relationship of epidermal growth factor receptor levels to the
                   prognosis of unresectable pharyngeal cancer patients treated by chemo-radiotherapy. Eur J Cancer 2001;37:2169-77.
               70.  Pivot X, Magne N, Guardiola E, Poissonnet G, Dassonville O, et al. Prognostic impact of the epidermal growth factor receptor levels for
                   patients with larynx and hypopharynx cancer. Oral Oncol 2005;41:320-7.
   21   22   23   24   25   26   27   28   29   30   31