Page 49 - Read Online
P. 49
Lotz et al. Cancer Drug Resist 2020;3:149-60 I http://dx.doi.org/10.20517/cdr.2019.114 Page 159
leukemia K562 cells. Mol Pharmacol 1994;46:58-66.
37. Ganapathi R, Constantinou A, Kamath N, Dubyak G, Grabowski D, et al. Resistance to etoposide in human leukemia HL-60 cells:
reduction in drug-induced DNA cleavage associated with hypophosphorylation of topoisomerase II phosphopeptides. Mol Pharmacol
1996;50:243-48.
38. Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M. The growing landscape of lysine acetylation links metabolism and cell
signalling. Nat Rev Mol Cell Biol 2014;15:536-50.
39. Mertins P, Qiao JW, Patel J, Udeshi ND, Clauser KR, et al. Integrated proteomic analysis of post-translational modifications by serial
enrichment. Nat Methods 2013;10:634-7.
40. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic
Acids Res 2015;43:D512-20.
41. Wu Q, Cheng ZY, Zhu J, Xu WQ, Peng XJ, et al. Suberoylanilide hydroxamic acid treatment reveals crosstalks among proteome,
ubiquitylome and acetylome in non-small cell lung cancer A549 cell line. Sci Rep 2015;5:9520.
42. Udeshi ND, Svinkina T, Mertins P, Kuhn E, Mani DR, et al. Refined preparation and use of anti-diglycine remnant (K-epsilon-GG)
antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments. Mol Cell Proteomics
2013;12:825-31.
43. Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell
2011;44:325-40.
44. Povlsen LK, Beli P, Wagner SA, Poulsen SL, Sylvestersen KB, et al. Systems-wide analysis of ubiquitylation dynamics reveals a key role
for PAF15 ubiquitylation in DNA-damage bypass. Nat Cell Biol 2012;14:1089-98.
45. Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, et al. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals
widespread regulatory roles. Mol Cell Proteomics 2011;10:M111.013284.
46. Akimov V, Barrio-Hernandez I, Hansen SVF, Hallenborg P, Pedersen AK, et al. UbiSite approach for comprehensive mapping of lysine
and N-terminal ubiquitination sites. Nat Struct Mol Biol 2018;25:631-40.
47. Hendriks IA, D’Souza RCJ, Yang B, Verlaan-de Vries M, Mann M, et al. Uncovering global SUMOylation signaling networks in a site-
specific manner. Nat Struct Molr Biol 2014;21:927-36.
48. Tsai SC, Valkov N, Yang WM, Gump J, Sullivan D, et al. Histone deacetylase interacts directly with DNA topoisomerase II. Nat Genet
2000;26:349-53.
49. Johnson CA, Padget K, Austin CA, Turner BM. Deacetylase activity associates with topoisomerase II and is necessary for etoposide-
induced apoptosis. J Biol Chem 2001;276:4539-42.
50. Chen MC, Chen CH, Chuang HC, Kulp SK, Teng CM, et al. Novel mechanism by which histone deacetylase inhibitors facilitate
topoisomerase II alpha degradation in hepatocellular carcinoma cells. Hepatology 2011;53:148-59.
51. Gilberto S, Peter M. Dynamic ubiquitin signaling in cell cycle regulation. J Cell Biol 2017;216:2259-71.
52. Eguren M, Alvarez-Fernandez M, Garcia F, Lopez-Contreras AJ, Fujimitsu K, et al. A synthetic lethal interaction between APC/C and
topoisomerase poisons uncovered by proteomic screens. Cell Rep 2014;6:670-83.
53. Guturi KKN, Bohgaki M, Bohgaki T, Srikumar T, Ng D, et al. RNF168 and USP10 regulate topoisomerase II alpha function via opposing
effects on its ubiquitylation. Nat Commun 2016;7:12638.
54. Kang X, Song C, Du X, Zhang C, Liu Y, et al. PTEN stabilizes TOP2A and regulates the DNA decatenation. Sci Rep 2015;5:17873.
55. Fielding AB, Concannon M, Darling S, Rusilowicz-Jones EV, Sacco JJ, et al. The deubiquitylase USP15 regulates topoisomerase II alpha
to maintain genome integrity. Oncogene 2018;37:2326-42.
56. Senturk JC, Bohlman S, Manfredi JJ. Mdm2 selectively suppresses DNA damage arising from inhibition of topoisomerase II independent
of p53. Oncogene 2017;36:6085-96.
57. Ogiso Y, Tomida A, Lei SH, Omura S, Tsuruo T. Proteasome inhibition circumvents solid tumor resistance to topoisomerase II-directed
drugs. Cancer Res 2000;60:2429-34.
58. Alchanati I, Teicher C, Cohen G, Shemesh V, Barr HM, et al. The E3 ubiquitin-ligase Bmi1/Ring1A controls the proteasomal degradation
of Top2 alpha cleavage complex - a potentially new drug target. PloS One 2009;4:e8104.
59. Sun Y, Miller Jenkins LM, Su YP, Nitiss KC, Nitiss JL, et al. A conserved SUMO-Ubiquitin pathway directed by RNF4/SLX5-SLX8
and PIAS4/SIZI drives proteasomal degradation of topoisomerase DNA-protein crosslinks. Bio Rxiv 2019. Available from: https://www.
biorxiv.org/content/10.1101/707661v1 [Last accessed on 20 Feb 2020]
60. Hay RT. SUMO: a history of modification. Mol Cell 2005;18:1-12.
61. Schellenberg MJ, Lieberman JA, Herrero-Ruiz A, Butler LR, Williams JG, et al. ZATT (ZNF451)-mediated resolution of topoisomerase 2
DNA-protein cross-links. Science 2017;357:1412-6.
62. Dawlaty MM, Malureanu L, Jeganathan KB, Kao E, Sustmann C, et al. Resolution of sister centromeres requires RanBP2-mediated
SUMOylation of topoisomerase II alpha. Cell 2008;133:103-15.
63. Ryu H, Furuta M, Kirkpatrick D, Gygi SP, Azuma Y. PIASy-dependent SUMOylation regulates DNA topoisomerase II alpha activity. J
Cell Biol 2010;191:783-94.
64. Antoniou-Kourounioti M, Mimmack ML, Porter ACG, Farr CJ. The impact of the C-terminal region on the interaction of topoisomerase
II alpha with mitotic chromatin. Int J Mol Sci 2019;20.
65. Edgerton H, Johansson M, Keifenheim D, Mukherjee S, Chacon JM, et al. A noncatalytic function of the topoisomerase II CTD in Aurora
B recruitment to inner centromeres during mitosis. J Cell Biol 2016;213:651-64.
66. Chen SF, Huang NL, Lin JH, Wu CC, Wang YR, et al. Structural insights into the gating of DNA passage by the topoisomerase II DNA-