Page 111 - Read Online
P. 111

Jia et al. Cancer Drug Resist 2019;2:210-24 I  http://dx.doi.org/10.20517/cdr.2018.010                                                   Page 223

                   instability in primary cells. PLoS Biol 2006;4:e51.
               90.  Berman H, Zhang J, Crawford YG, Gauthier ML, Fordyce CA, et al. Genetic and epigenetic changes in mammary epithelial cells identify
                   a subpopulation of cells involved in early carcinogenesis. Cold Spring Harb Symp Quant Biol 2005;70:317-27.
               91.  Pietromonaco SF, Seluja GA, Aitken A, Elias L. Association of 14-3-3 proteins with centrosomes. Blood Cells Mol Dis 1996;22:225-37.
               92.  Mukhopadhyay A, Sehgal L, Bose A, Gulvady A, Senapati P, et al. 14-3-3γ prevents centrosome amplification and neoplastic progression.
                   Sci Rep 2016;6:26580.
               93.  Suzuki H, Itoh F, Toyota M, Kikuchi T, Kakiuchi H, et al. Inactivation of the 14-3-3 sigma gene is associated with 5’ CpG island
                   hypermethylation in human cancers.Cancer Res 2000;60:4353-7.
               94.  Iwata N, Yamamoto H, Sasaki S, Itoh F, Suzuki H, et al. Frequent hypermethylation of CpG islands and loss of expression of the 14-3-3
                   sigma gene in human hepatocellular. Oncogene 2000;19:5298-302.
               95.  Chanda S, Dasgupta UB, Guhamazumder D, Gupta M, Chaudhuri U, et al. DNA hypermethylation of promoter of gene p53 and p16 in
                   arsenic-exposed people with and without malignancy. Toxicol Sci 2006;89:431-7.
               96.  Jha AK, Nikbakht M, Jain V, Sehgal A, Capalash N, et al. Promoter hypermethylation of p73 and p53 genes in cervical cancer patients
                   among north Indian population. Mol Biol Rep 2012;39:9145-57.
               97.  Adrian Jarzynski, Katarzyna Papiernik, Malgorzata Polz-Dacewicz. Analysis of mutation and promoter methylation of TP53 gene in
                   tumors of the head and neck. Current Issues in Pharmacy and Medical Sciences 2016;29:53-6.
               98.  Liu JL, Ma HP, Lu XL, Sun SH, Guo X, et al. NF-κB induces abnormal centrosome amplification by upregulation of CDK2 in laryngeal
                   squamous cell cancer. Int J Oncol 2011;39:915-24.
               99.  Yu F, Thiesen J, Strätling WH. Histone deacetylase-independent transcriptional repression by methyl-CpG-binding protein 2. Nucleic
                   Acids Res 2000;28:2201-6.
               100. Lee MY, Moreno CS, Saavedra HI. E2F activators signal and maintain centrosome amplification in breast cancer cells. Mol Cell Biol
                   2014;34:2581-99.
               101. Liao WT, Lu JH, Lee CH, Lan CE, Chang JG, et al. An interaction between arsenic-induced epigenetic modification and inflammatory
                   promotion in a skin equivalent during arsenic carcinogenesis. J Invest Dermatol 2017;137:187-96.
               102. Chen WJ, Wang WT, Tsai TY, Li HK, Lee YW. DDX3 localizes to the centrosome and prevents multipolar mitosis by epigenetically and
                   translationally modulating p53 expression. Sci Rep 2017;7:9411.
               103. Pouysségur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 2006;441:437-43.
               104. Mittal K, Choi DH, Ogden A, Donthamsetty S, Melton BD, et al. Amplified centrosomes and mitotic index display poor concordance
                   between patient tumors and cultured cancer cells. Sci Rep 2017;7:43984.
               105. Bijnsdorp IV, Hodzic J, Lagerweij T, Westerman B, Krijgsman O, et al. miR-129-3p controls centrosome number in metastatic prostate
                   cancer cells by repressing CP110. Oncotarget 2016;7:16676-87.
               106. Wang ZD, Shen LP, Chang C, Zhang XQ, Chen ZM, et al. Long noncoding RNA lnc-RI is a new regulator of mitosis via targeting
                   miRNA-210-3p to release PLK1 mRNA activity. Sci Rep 2016;6:25385.
               107. Takahashi Y, Iwaya T, Sawada G, Kurashige J, Matsumura T, et al. Up-regulation of NEK2 by microRNA-128 methylation is associated
                   with poor prognosis in colorectal cancer. Ann Surg Oncol 2014;21:205-12.
               108. Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature 1997;387:296-9.
               109. Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997;387:299-303.
               110. Leach FS, Tokino T, Meltzer P, Burrell M, Oliner JD, et al. p53 Mutation and MDM2 amplification in human soft tissue sarcomas. Cancer
                   Res 1993;53:2231-4.
               111. Akio Suzuki, Masakazu Toi, Yutaka Yamamoto, Shigehira Saji, Mariko Muta, et al. Role of MDM2 overexpression in doxorubicin
                   resistance of breast carcinoma, Jpn J Cancer Res 1998;89:221-7.
               112. Keshelava N, Zuo JJ, Chen P, Waidyaratne SN, Luna MC, et al. Loss of p53 function confers high-level multidrug resistance in
                   neuroblastoma cell lines. Cancer Res 2001;61:6185-93.
               113. Čajánek L, Glatter T, Nigg EA. The E3 ubiquitin ligase Mib1 regulates Plk4 and centriole biogenesis. J Cell Sci 2015;128:1674-82.
               114. Shen X, Jia Z, D‘Alonzo D, Wang X, Bruder E, et al. HECTD1 controls the protein level of IQGAP1 to regulate the dynamics of adhesive
                   structures. Cell Commun Signal 2017;15:2.
               115. Wang XG, De Geyter C, Jia ZH, Peng Y, Zhang H. HECTD1 regulates expression of SNAIL: implications for epithelial-mesenchymal
                   transition (EMT). Forthcoming 2019.
               116. Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and
                   children. N Engl J Med 2018;378:731-9.
               117. Sampson PB, Liu Y, Patel NK, Feher M, Forrest B, et al. The discovery of polo-like kinase 4 inhibitors: design and optimization of
                   spiro[cyclopropane-1,3′[3H]indol]-2′(1′H)-ones as orally bioavailable antitumor agents. J Med Chem 2015;58:130-46.
               118. Mason JM, Lin DC, Wei X, Che Y, Yao Y, et al. Functional characterization of CFI-400945, a Polo-like kinase 4 inhibitor, as a potential
                   anticancer agent. Cancer Cell 2014;26:163-76.
               119. Liu X, Winey M. The MPS1 family of protein kinases. Annu Rev Biochem 2012; 81:561-85.
               120. Janssen A, Kops GJ, Medema RH. Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. Proc Natl
                   Acad Sci U S A 2009;106:19108-13.
               121. Jeong SB, Im JH, Yoon JH, Bui QT, Lim SC, et al. Essential role of polo-like kinase 1 (Plk1) oncogene in tumor growth and metastasis of
                   tamoxifen-resistant breast cancer. Mol Cancer Ther 2018;17:825-37.
               122. Dominguez-Brauer C, Thu KL, Mason JM, Blaser H, Bray MR, et al. Targeting mitosis in cancer: emerging strategies. Mol Cell
   106   107   108   109   110   111   112   113   114   115   116