Page 108 - Read Online
P. 108

Page 220                                                   Jia et al. Cancer Drug Resist 2019;2:210-24  I  http://dx.doi.org/10.20517/cdr.2018.010

               Financial support and sponsorship
               This research was funded by university of Basel, Switzerland. Jia ZH was supported by CSC, China.


               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2019.



               REFERENCES
               1.   Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-74.
               2.   Baylin SB, Jones PA. A decade of exploring the cancer epigenome-biological and translational implications. Nat Rev Cancer 2011;11:726-34.
               3.   Sandoval J, Esteller M. Cancer epigenomics: beyond genomics. Curr Opin Genet Dev 2012;22:50-5.
               4.   Salisbury JL. The contribution of epigenetic changes to abnormal centrosomes and genomic instability in breast cancer. J Mammary
                   Gland Biol Neoplasia 2001;6:203-12.
               5.   Pihan GA, Purohit A, Wallace J, Knecht H, Woda B, et al. Centrosome defects and genetic instability in malignant tumors. Cancer Res
                   1998;58:3974-85.
               6.   Denu RA, Zasadil LM, Kanugh C, Laffin J, Weaver BA, et al. Centrosome amplification induces high grade features and is prognostic of
                   worse outcomes in breast cancer. BMC Cancer 2016;16:47.
               7.   Lingle WL, Salisbury JL. Altered centrosome structure is associated with abnormal mitoses in human breast tumors. Am J Pathol
                   1999;155:1941-51.
               8.   Lingle WL, Lutz WH, Ingle JN, Maihle NJ, Salisbury JL. Centrosome hypertrophy in human breast tumors: implications for genomic
                   stability and cell polarity. Proc Natl Acad Sci U S A 1998;95:2950-5.
               9.   Krämer A, Neben K, Ho AD. Centrosome aberrations in hematological malignancies. Cell Biol Int 2005;29:375-83.
               10.  Giehl M, Fabarius A, Frank O, Hochhaus A, Hafner M, et al. Centrosome aberrations in chronic myeloid leukemia correlate with stage of
                   disease and chromosomal instability. Leukemia 2005;19:1192-7.
               11.  Starita LM, Machida Y, Sankaran S, Elias JE, Griffin K, et al. BRCA1-dependent ubiquitination of gamma-tubulin regulates centrosome
                   number. Mol Cell Biol 2004;24:8457-66.
               12.  Conduit PT, Wainman A, Raff JW. Centrosome function and assembly in animal cells. Nat Rev Mol Cell Biol 2015;16:611-24.
               13.  Jakobsen L, Vanselow K, Skogs M, Toyoda Y, Lundberg E, et al. Novel asymmetrically localizing components of human centrosomes
                   identified by complementary proteomics methods. EMBO J 2011;30:1520-35.
               14.  Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, et al. Proteomic characterization of the human centrosome by protein
                   correlation profiling. Nature 2003;426:570-4.
               15.  Loncarek J, Bettencourt-Dias M. Building the right centriole for each cell type. J Cell Biol 2018;217:823-35.
               16.  O’Connell KF, Caron C, Kopish KR, Hurd DD, Kemphues KJ, et al. The C. elegans zyg-1 gene encodes a regulator of centrosome
                   duplication with distinct maternal and paternal roles in the embryo. Cell 2001;105:547-58.
               17.  Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA. The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 2005;7:1140-6.
               18.  Arquint C, Nigg EA. The PLK4-STIL-SAS-6 module at the core of centriole duplication. Biochem Soc Trans 2016;44:1253-63.
               19.  Pihan GA. Centrosome dysfunction contributes to chromosome instability, chromoanagenesis, and genome reprograming in cancer. Front
                   Oncol 2013;3:277.
               20.  Yang J, Adamian M, Li T. Rootletin interacts with C-Nap1 and may function as a physical linker between the pair of centrioles/basal
                   bodies in cells. Mol Biol Cell 2006;17:1033-40.
               21.  Mardin BR, Lange C, Baxter JE, Hardy T, Scholz SR, et al. Components of the Hippo pathway cooperate with Nek2 kinase to regulate
                   centrosome disjunction. Nat Cell Biol 2010;12:1166-76.
               22.  Fry AM, Meraldi P, Nigg EA. A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle
                   regulators. EMBO J 1998;17:470-81.
               23.  Centrosome. Available from: https://www.proteinatlas.org/humanproteome/cell/centrosome. [Last accessed on 22 Apr 2019]
               24.  Boveri T. 1900. Ueber die Natur der Centrosomen. Zellen-Studien 4. Jena, Germany: G. Fischer
               25.  Farina F, Gaillard J, Guérin C, Couté Y, Sillibourne J, et al. The centrosome is an actin-organizing centre. Nat Cell Biol 2016;18:65-75.
               26.  Nam HJ, Naylor RM, van Deursen JM. Centrosome dynamics as a source of chromosomal instability. Trends Cell Biol 2015;25:65-73.
   103   104   105   106   107   108   109   110   111   112   113