Page 110 - Read Online
P. 110
Page 222 Jia et al. Cancer Drug Resist 2019;2:210-24 I http://dx.doi.org/10.20517/cdr.2018.010
heterogeneity. J Cancer Metastasis Treat 2018;4:pii:43.
59. Lomonosova E, Chinnadurai G. BH3-only proteins in apoptosis and beyond: an overview. Oncogene 2008;27:S2-19.
60. Zhou W, Yang Y, Xia J, Wang H, Salama ME, et al. NEK2 induces drug resistance mainly through activation of efflux drug pumps and is
associated with poor prognosis in myeloma and other cancers. Cancer Cell 2013;23:48-62.
61. Moustafa-Kamal M, Gamache I, Lu Y, Li S, Teodoro JG, et al. BimEL is phosphorylated at mitosis by Aurora A and targeted for
degradation by βTrCP1. Cell Death Differ 2013;20:1393-1403.
62. Kalimutho M, Sinha D, Jeffery J, Nones K, Srihari S, et al. CEP55 is a determinant of cell fate during perturbed mitosis in breast cancer.
EMBO Mol Med 2018;10:e8566.
63. Hayward DG, Clarke RB, Faragher AJ, Pillai MR, Hagan IM, et al. The centrosomal kinase Nek2 displays elevated levels of protein
expression in human breast cancer. Cancer Res 2004;64:7370-6.
64. Yoo BH, Kang DS, Park CH, Kang K, Bae CD. CKAP2 phosphorylation by CDK1/cyclin B1 is crucial for maintaining centrosome
integrity. Exp Mol Med 2017;49:e354.
65. Boutros R, Ducommun B. Asymmetric localization of the CDC25B phosphatase to the mother centrosome during interphase. Cell Cycle
2008;7:401-6.
66. Cazales M, Schmitt E, Montembault E, Dozier C, Prigent C, et al. CDC25B phosphorylation by Aurora-A occurs at the G2/M transition
and is inhibited by DNA damage. Cell Cycle 2005;4:1233-8.
67. Bouché JP, Froment C, Dozier C, Esmenjaud-Mailhat C, Lemaire M, et al. NanoLC-MS/MS analysis provides new insights into the
phosphorylation pattern of Cdc25B in vivo: full overlap with sites of phosphorylation by Chk1 and Cdk1/cycB kinases in vitro. J
Proteome Res 2008;7:1264-73.
68. Dutertre S, Cazales M, Quaranta M, Froment C, Trabut V, et al. Phosphorylation of cdc25b by aurora-a at the centrosome contributes to
the g2-m transition. J Cell Sci 2004;117:2523-31.
69. Boutros R, Lobjois V, Ducommun B. CDC25B involvement in the centrosome duplication cycle and in microtubule nucleation. Cancer
Res 2007;67:11557-64.
70. Wang J, Nikhil K, Viccaro K, Chang L, Jacobsen M, et al. The Aurora-A-Twist1 axis promotes highly aggressive phenotypes in pancreatic
carcinoma. J Cell Sci 2017;130:1078-93.
71. Joukov V, De Nicolo A, Rodriguez A, Walter JC, Livingston DM. Centrosomal protein of 192 kDa (Cep192) promotes centrosome-driven
spindle assembly by engaging in organelle-specific Aurora A activation. Proc Natl Acad Sci USA 2010;107:21022-7.
72. Scutt PJ, Chu ML, Sloane DA, Cherry M, Bignell CR, et al. Discovery and exploitation of inhibitor-resistant aurora and polo kinase
mutants for the analysis of mitotic networks. J Biol Chem 2009;284:15880-93.
73. Zorba A, Buosi V, Kutter S, Kern N, Pontiggia F, et al. Molecular mechanism of Aurora A kinase autophosphorylation and its allosteric
activation by TPX2. ELife 2014;3:e02667.
74. Nakamura T, Saito H, Takekawa M. SAPK pathways and p53 cooperatively regulate PLK4 activity and centrosome integrity under stress.
Nat Commun 2013;4:1775.
75. RauchN, Rukhlenko OS, Kolch W, Kholodenko BN. MAPK kinase signaling dynamics regulate cell fate decisions and drug resistance.
Current Opin Struct Biol 2016;41:151-8.
76. Cunha-Ferreira I, Bento I, Pimenta-Marques A, Jana SC, Lince-Faria M, et al. Regulation of autophosphorylation controls PLK4 self-destruction
and centriole number. Current Biology 2013;23:2245-54.
77. Guderian G, Westendorf J, Uldschmid A, Nigg EA. Plk4 trans-autophosphorylation regulates centriole number by controlling betaTrCP-
mediated degradation. J Cell Sci 2010;123:2163-9.
78. Slevin LK, Nye J, Pinkerton DC, Buster DW, Rogers GC, et al. The structure of the plk4 cryptic polo box reveals two tandem polo boxes
required for centriole duplication. Structure 2012;20:1905-17.
79. Fournier M, Orpinell M, Grauffel C, Scheer E, Garnier JM, et al. KAT2A/KAT2B-targeted acetylome reveals a role for PLK4 acetylation
in preventing centrosome amplification. Nat Commun 2016;7:13227.
80. Ling H, Peng L, Seto E, Fukasawa K. Suppression of centrosome duplication and amplification by deacetylases. Cell Cycle 2012;11:3779-91.
81. Tachibana M, Sugimoto K, Fukushima T, Shinkai Y. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone
methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem 2001;276:25309-17.
82. Kondo Y, Shen L, Ahmed S, Boumber Y, Sekido Y, et al. Downregulation of histone H3 lysine 9 methyltransferase G9a induces
centrosome disruption and chromosome instability in cancer cells. PLoS ONE 2008;3:e2037.
83. Romanov SR, Kozakiewicz BK, Holst CR, Stampfer MR, Haupt LM, et al. Normal human mammary epithelial cells spontaneously
escape senescence and acquire genomic changes. Nature 2001.409:633.
84. McConnell BB, Gregory FJ, Stott FJ, Hara E, Peters G. Induced expression of p16 INK4a inhibits both CDK4- and CDK2-associated kinase
activity by reassortment of cyclin-CDK-inhibitor complexes. Mol Cell Biol 1999;19:1981-9.
85. Lacey KR, Jackson PK, Stearns T. Cyclin-dependent kinase control of centrosome duplication. Proc Natl Acad Sci U S A 1999;96:2817-22.
86. Matsumoto Y, Hayashi K, Nishida E. Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr
Biol 1999;9:429-32.
87. Foster SA, Wong DJ, Barrett MT, Galloway DA. Inactivation of p16 in human mammary epithelial cells by CpG island methylation. Mol
Cell Biol 1998;18:1793-1801.
88. Holst CR, Nuovo GJ, Esteller M, Chew K, Baylin SB, et al. Methylation of p16(INK4a) promoters occurs in vivo in histologically normal
human mammary epithelia. Cancer Res 2003;63:1596-601.
89. McDermott KM, Zhang J, Holst CR, Kozakiewicz BK, Singla V, et al. p16(INK4a) prevents centrosome dysfunction and genomic