Page 102 - Read Online
P. 102
Franca et al. Cancer Drug Resist 2019;2:256-70 I http://dx.doi.org/10.20517/cdr.2019.004 Page 269
37. Meijer B, Kreijne JE, van Moorsel SAW, Derijks LJJ, Bouma G, et al. 6-methylmercaptopurine-induced leukocytopenia during
thiopurine therapy in inflammatory bowel disease patients. J Gastroenterol Hepatol 2017;32:1183-90.
38. Yang SK, Hong M, Baek J, Choi H, Zhao W, et al. A common missense variant in NUDT15 confers susceptibility to thiopurine-induced
leukopenia. Nat Genet 2014;46:1017-20.
39. Yang JJ, Whirl-Carrillo M, Scott SA, Turner AJ, Schwab M, et al. Pharmacogene variation consortium gene introduction: NUDT15.
Clin Pharmacol Ther 2018.
40. Kakuta Y, Kinouchi Y, Shimosegawa T. Pharmacogenetics of thiopurines for inflammatory bowel disease in East Asia: prospects for
clinical application of NUDT15 genotyping. J Gastroenterol 2018;53:172-80.
41. Yang JJ, Landier W, Yang W, Liu C, Hageman L, et al. Inherited NUDT15 variant is a genetic determinant of mercaptopurine
intolerance in children with acute lymphoblastic leukemia. J Clin Oncol 2015;33:1235-42.
42. Moriyama T, Nishii R, Perez-Andreu V, Yang W, Klussmann FA, et al. NUDT15 polymorphisms alter thiopurine metabolism and
hematopoietic toxicity. Nat Genet 2016;48:367-73.
43. Yin D, Xia X, Zhang J, Zhang S, Liao F, et al. Impact of NUDT15 polymorphisms on thiopurines-induced myelotoxicity and thiopurines
tolerance dose. Oncotarget 2017;8:13575-85.
44. Cargnin S, Genazzani AA, Canonico PL, Terrazzino S. Diagnostic accuracy of NUDT15 gene variants for thiopurine-induced
leukopenia: a systematic review and meta-analysis. Pharmacol Res 2018;135:102-11.
45. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, et al. Analysis of protein-coding genetic variation in 60,706 humans.
Nature 2016;536:285-91.
46. Walker G, Harrison J, Voskuil M, Heap G, Heerasing N. NUDT15 variants contribute to thiopurine-induced myelosuppression in
European populations. 2018. Available from: https://www.ecco-ibd.eu/publications/congress-abstract-s/abstracts-2018/item/op035-
nudt15-variants-contribute-to-thiopurine-induced-myelosuppression-in-european-populations.html. [Last accessed on 15 Apr 2019]
47. Moriyama T, Nishii R, Lin TN, Kihira K, Toyoda H, et al. The effects of inherited NUDT15 polymorphisms on thiopurine active
metabolites in Japanese children with acute lymphoblastic leukemia. Pharmacogenet Genomics 2017;27:236-9.
48. Lin S, McLennan AG, Ying K, Wang Z, Gu S, et al. Cloning, expression, and characterization of a human inosine triphosphate
pyrophosphatase encoded by the itpa gene. J Biol Chem 2001;276:18695-701.
49. Burgis NE. A disease spectrum for ITPA variation: advances in biochemical and clinical research. J Biomed Sci 2016;23:73.
50. Sumi S, Marinaki AM, Arenas M, Fairbanks L, Shobowale-Bakre M, et al. Genetic basis of inosine triphosphate pyrophosphohydrolase
deficiency. Hum Genet 2002;111:360-7.
51. Behmanesh M, Sakumi K, Abolhassani N, Toyokuni S, Oka S, et al. ITPase-deficient mice show growth retardation and die before
weaning. Cell Death Differ 2009;16:1315-22.
52. Vanderheiden BS. Possible implication of an inosinetriphosphate metabolic error and glutamic acid decarboxylase in paranoid
schizophrenia. Biochem Med 1979;21:22-32.
53. Nakauchi A, Wong JH, Mahasirimongkol S, Yanai H, Yuliwulandari R, et al. Identification of ITPA on chromosome 20 as a
susceptibility gene for young-onset tuberculosis. Hum Genome Var 2016;3:15067.
54. Mollaahmadi F, Moini A, Salman Yazdi R, Behmanesh M. The rs1127354 polymorphism in itpa is associated with susceptibility to
infertility. Cell J 2018;20:73-7.
55. Stenmark P, Kursula P, Flodin S, Gräslund S, Landry R, et al. Crystal structure of human inosine triphosphatase. Substrate binding and
implication of the inosine triphosphatase deficiency mutation P32T. J Biol Chem 2007;282:3182-7.
56. Marsh S, King CR, Ahluwalia R, McLeod HL. Distribution of ITPA P32T alleles in multiple world populations. J Hum Genet
2004;49:579-81.
57. Fellay J, Thompson AJ, Ge D, Gumbs CE, Urban TJ, Shianna KV, et al. ITPA gene variants protect against anaemia in patients treated
for chronic hepatitis C. Nature 2010;464:405-8.
58. Coelho AV, Silva SP, Zandonà L, Stocco G, Decorti G, et al. Role of inosine triphosphate pyrophosphatase gene variant on fever
incidence during zidovudine antiretroviral therapy. Genet Mol Res 2017;16.
59. Stocco G, Cheok MH, Crews KR, Dervieux T, French D, et al. Genetic polymorphism of inosine triphosphate pyrophosphatase is
a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia. Clin Pharmacol Ther
2009;85:164-72.
60. Kim H, Kang HJ, Kim HJ, Jang MK, Kim NH, et al. Pharmacogenetic analysis of pediatric patients with acute lymphoblastic leukemia:
a possible association between survival rate and ITPA polymorphism. PLoS One 2012;7:e45558
61. Wan Rosalina WR, Teh LK, Mohamad N, Nasir A, Yusoff R, et al. Polymorphism of ITPA 94C>A and risk of adverse effects among
patients with acute lymphoblastic leukaemia treated with 6-mercaptopurine. J Clin Pharm Ther 2012;37:237-41.
62. Franca R, Rebora P, Bertorello N, Fagioli F, Conter V, et al. Pharmacogenetics and induction/consolidation therapy toxicities in acute
lymphoblastic leukemia patients treated with AIEOP-BFM ALL 2000 protocol. Pharmacogenomics J 2017;17:4-10.
63. Modregger J, Ritter B, Witter B, Paulsson M, Plomann M. All three PACSIN isoforms bind to endocytic proteins and inhibit
endocytosis. J Cell Sci 2000;113:4511-21.
64. Frost A, Unger VM, De Camilli P. The BAR domain superfamily: membrane-molding macromolecules. Cell 2009;137:191-6.
65. Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ, et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR
structure. Science 2004;303:495-9.
66. Senju Y, Rosenbaum E, Shah C, Hamada-Nakahara S, Itoh Y, et al. Phosphorylation of PACSIN2 by protein kinase C triggers the
removal of caveolae from the plasma membrane. J Cell Sci 2015;128:2766-80