Page 35 - Read Online
P. 35
Xu et al. Cancer Drug Resist 2024;7:13 https://dx.doi.org/10.20517/cdr.2023.141 Page 11 of 14
miR-1205. Cell Death Discov 2023;9:153. DOI PubMed PMC
11. Ye F, Gao G, Zou Y, et al. circFBXW7 inhibits malignant progression by sponging miR-197-3p and encoding a 185-aa protein in
triple-negative breast cancer. Mol Ther Nucleic Acids 2019;18:88-98. DOI PubMed PMC
12. Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature
1979;280:339-40. DOI PubMed
13. Cocquerelle C, Mascrez B, Hétuin D, Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J 1993;7:155-60. DOI
PubMed
14. Chen L, Wang C, Sun H, et al. The bioinformatics toolbox for circRNA discovery and analysis. Brief Bioinform 2021;22:1706-28.
DOI PubMed PMC
15. Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature
2013;495:333-8. DOI PubMed
16. Haynes B, Sarma A, Nangia-makker P, Shekhar MP. Breast cancer complexity: implications of intratumoral heterogeneity in clinical
management. Cancer Metastasis Rev 2017;36:547-55. DOI PubMed PMC
17. Zhang C, Zhang B. RNA therapeutics: updates and future potential. Sci China Life Sci 2023;66:12-30. DOI PubMed PMC
18. Rong Z, Xu J, Shi S, et al. Circular RNA in pancreatic cancer: a novel avenue for the roles of diagnosis and treatment. Theranostics
2021;11:2755-69. DOI PubMed PMC
19. Liu CX, Chen LL. Circular RNAs: characterization, cellular roles, and applications. Cell 2022;185:2016-34. DOI PubMed
20. Li X, Zhang JL, Lei YN, et al. Linking circular intronic RNA degradation and function in transcription by RNase H1. Sci China Life
Sci 2021;64:1795-809. DOI PubMed
21. Conn VM, Hugouvieux V, Nayak A, et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop
formation. Nature Plants 2017;3:17053. DOI PubMed
22. Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA
2013;19:141-57. DOI PubMed PMC
23. Zhang X, Wang H, Zhang Y, Lu X, Chen L, Yang L. Complementary sequence-mediated exon circularization. Cell 2014;159:134-47.
DOI PubMed
24. Conn S, Pillman K, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell 2015;160:1125-34.
DOI PubMed
25. Errichelli L, Dini Modigliani S, Laneve P, et al. FUS affects circular RNA expression in murine embryonic stem cell-derived motor
neurons. Nat Commun 2017;8:14741. DOI PubMed PMC
26. Ashwal-fluss R, Meyer M, Pamudurti N, et al. circRNA biogenesis competes with pre-mRNA splicing. Molecular Cell 2014;56:55-
66. DOI PubMed
27. Guo Y, Yang J, Huang Q, et al. Circular RNAs and their roles in head and neck cancers. Mol Cancer 2019;18:44. DOI PubMed
PMC
28. Zhang Y, Zhang X, Chen T, et al. Circular intronic long noncoding RNAs. Mol Cell 2013;51:792-806. DOI PubMed
29. Hoque P, Romero B, Akins RE, Batish M. Exploring the multifaceted biologically relevant roles of circRNAs: from regulation,
translation to biomarkers. Cells 2023;12:2813. DOI PubMed PMC
30. Xin R, Gao Y, Gao Y, et al. isoCirc catalogs full-length circular RNA isoforms in human transcriptomes. Nat Commun 2021;12:266.
DOI PubMed PMC
31. Chiang TW, Jhong SE, Chen YC, Chen CY, Wu WS, Chuang TJ. FL-circAS: an integrative resource and analysis for full-length
sequences and alternative splicing of circular RNAs with nanopore sequencing. Nucleic Acids Res 2024;52:D115-23. DOI PubMed
PMC
32. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215-33. DOI PubMed PMC
33. Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature 2014;505:344-52. DOI
PubMed PMC
34. Verduci L, Strano S, Yarden Y, Blandino G. The circ RNA-micro RNA code: emerging implications for cancer diagnosis and
treatment. Mol Oncol 2019;13:669-80. DOI PubMed PMC
35. Zou Y, Zheng S, Deng X, et al. The role of circular RNA CDR1as/ciRS-7 in regulating tumor microenvironment: a pan-cancer
analysis. Biomolecules 2019;9:429. DOI PubMed PMC
36. Sang M, Meng L, Liu S, et al. Circular RNA ciRS-7 maintains metastatic phenotypes as a ceRNA of miR-1299 to target MMPs. Mol
Cancer Res 2018;16:1665-75. DOI PubMed
37. Li Y, Jiang B, Zeng L, et al. Adipocyte-derived exosomes promote the progression of triple-negative breast cancer through
circCRIM1-dependent OGA activation. Environ Res 2023;239:117266. DOI PubMed
38. Ding L, Xie Z. CircWHSC1 regulates malignancy and glycolysis by the miR-212-5p/AKT3 pathway in triple-negative breast cancer.
Exp Mol Pathol 2021;123:104704. DOI PubMed
39. Ma J, Chen C, Fan Z, et al. CircEGFR reduces the sensitivity of pirarubicin and regulates the malignant progression of triple-negative
breast cancer via the miR-1299/EGFR axis. Int J Biol Macromol 2023;244:125295. DOI PubMed
40. Huang S, Xie J, Lei S, Fan P, Zhang C, Huang Z. CircDUSP1 regulates tumor growth, metastasis, and paclitaxel sensitivity in triple-
negative breast cancer by targeting miR-761/DACT2 signaling axis. Mol Carcinog 2023;62:450-63. DOI PubMed
41. Dou D, Ren X, Han M, et al. CircUBE2D2 (hsa_circ_0005728) promotes cell proliferation, metastasis and chemoresistance in triple-