Page 131 - Read Online
P. 131

Wong et al. Cancer Drug Resist 2023;6:768-87  https://dx.doi.org/10.20517/cdr.2023.58                                              Page 786

                    does checkpoint inhibitor immunotherapy not work for all patients? Am Soc Clin Oncol Educ Book 2019;39:147-64.  DOI
                                                           +
                                                                +
               109.      Viehl CT, Moore TT, Liyanage UK, et al. Depletion of CD4 CD25  regulatory T cells promotes a tumor-specific immune response
                    in pancreas cancer-bearing mice. Ann Surg Oncol 2006;13:1252-8.  DOI
               110.      Simpson TR, Li F, Montalvo-Ortiz W, et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of
                    anti-CTLA-4 therapy against melanoma. J Exp Med 2013;210:1695-710.  DOI
               111.      Meyer C, Cagnon L, Costa-Nunes CM, et al. Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients
                    treated with ipilimumab. Cancer Immunol Immunother 2014;63:247-57.  DOI
               112.      Kaneda MM, Messer KS, Ralainirina N, et al. PI3Kγ is a molecular switch that controls immune suppression. Nature 2016;539:437-
                    42.  DOI
               113.      De Henau O, Rausch M, Winkler D, et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid
                    cells. Nature 2016;539:443-7.  DOI
               114.      Chanmee T, Ontong P, Konno K, Itano N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers
                    2014;6:1670-90.  DOI
               115.      Qian BZ, Li J, Zhang H, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011;475:222-5.
                    DOI
               116.      Scholl SM, Pallud C, Beuvon F, et al. Anti-colony-stimulating factor-1 antibody staining in primary breast adenocarcinomas
                    correlates with marked inflammatory cell infiltrates and prognosis. J Natl Cancer Inst 1994;86:120-6.  DOI
               117.      Zhu Y, Knolhoff BL, Meyer MA, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to
                    T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res 2014;74:5057-69.  DOI
               118.      Mok  S,  Koya  RC,  Tsui  C,  et  al.  Inhibition  of  CSF-1  receptor  improves  the  antitumor  efficacy  of  adoptive  cell  transfer
                    immunotherapy. Cancer Res 2014;74:153-61.  DOI
               119.     Najafi M, Farhood B, Mortezaee K. Contribution of regulatory T cells to cancer: a review. J Cell Physiol 2019;234:7983-93.  DOI
               120.      Neel JC, Humbert L, Lebrun JJ. The dual role of TGFβ in human cancer: from tumor suppression to cancer metastasis. ISRN Mol Biol
                    2012;2012:381428.   DOI
               121.     Gao Z, Dong K, Zhang H. The roles of CD73 in cancer. Biomed Res Int 2014;2014:460654.  DOI
               122.      Sitkovsky MV, Lukashev D, Apasov S, et al. Physiological control of immune response and inflammatory tissue damage by
                    hypoxia-inducible factors and adenosine A 2A  receptors. Annu Rev Immunol 2004;22:657-82.  DOI
               123.      Wang L, Zhou X, Zhou T, et al. Ecto-5’-nucleotidase promotes invasion, migration and adhesion of human breast cancer cells. J
                    Cancer Res Clin Oncol 2008;134:365-72.  DOI
               124.      Spychala J, Lazarowski E, Ostapkowicz A, Ayscue LH, Jin A, Mitchell BS. Role of estrogen receptor in the regulation of ecto-5’-
                    nucleotidase and adenosine in breast cancer. Clin Cancer Res 2004;10:708-17.  DOI
               125.      Stagg J, Divisekera U, McLaughlin N, et al. Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad
                    Sci U S A 2010;107:1547-52.  DOI
               126.      Koyama S, Akbay EA, Li YY, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative
                    immune checkpoints. Nat Commun 2016;7:10501.  DOI
                                                                                  +
               127.      Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, et al. Tumor-infiltrating NY-ESO-1-specific CD8  T cells are negatively regulated by
                    LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci U S A 2010;107:7875-80.  DOI
                                                                                              +
               128.      Johnston RJ, Comps-Agrar L, Hackney J, et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8  T cell effector
                    function. Cancer Cell 2014;26:923-37.  DOI
               129.      Thommen DS, Schreiner J, Müller P, et al. Progression of lung cancer is associated with increased dysfunction of T cells defined by
                    coexpression of multiple inhibitory receptors. Cancer Immunol Res 2015;3:1344-55.  DOI
               130.      Davar D, Boasberg P, Eroglu Z, et al. A phase 1 study of TSR-022, an anti-TIM-3 monoclonal antibody, in combination with TSR-
                    042 (anti-PD-1) in patients with colorectal cancer and post-PD-1 NSCLC and melanoma. In: SITC 2018. p.106-7. Available from:
                    https://higherlogicdownload.s3.amazonaws.com/SITCANCER/7aaf41a8-2b65-4783-b86e-d48d26ce14f8/UploadedImages/Annual_
                    Meeting_2018/Annual_Meeting/Abstracts/Abstract_Book_Edited_11_20.pdf. [Last accessed on 15 Nov 2023].
               131.      Ascierto PA, Bono P, Bhatia S, et al. Efficacy of BMS-986016, a monoclonal antibody that targets lymphocyte activation gene-3
                    (LAG-3), in combination with nivolumab in pts with melanoma who progressed during prior anti-PD-1/PD-L1 therapy (mel prior IO)
                    in all-comer and biomarker-enriched populations. Ann Oncol 2017;28:v611-2.  DOI
               132.      Rodriguez-Abreu D, Johnson ML, Hussein MA, et al. Primary analysis of a randomized, double-blind, phase II study of the anti-
                    TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first-line (1L) treatment in patients with
                    PD-L1-selected NSCLC (CITYSCAPE). J Clin Oncol 2020;38:9503.  DOI
               133.      Nair VS, El Salhat H, Taha RZ, John A, Ali BR, Elkord E. DNA methylation and repressive H3K9 and H3K27 trimethylation in the
                    promoter regions of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, and PD-L1 genes in human primary breast cancer. Clin Epigenetics
                    2018;10:78.  DOI
               134.      Hong DS, Schoffski P, Calvo A, et al. Phase I/II study of LAG525 ± spartalizumab (PDR001) in patients (pts) with advanced
                    malignancies. J Clin Oncol 2018;36:3012.  DOI
               135.      Jacobs F, Agostinetto E, Miggiano C, De Sanctis R, Zambelli A, Santoro A. Hope and hype around immunotherapy in triple-negative
                    breast cancer. Cancers 2023;15:2933.  DOI
               136.      Agostinetto E, Losurdo A, Nader-Marta G, et al. Progress and pitfalls in the use of immunotherapy for patients with triple negative
   126   127   128   129   130   131   132   133   134   135   136