Page 131 - Read Online
P. 131
Wong et al. Cancer Drug Resist 2023;6:768-87 https://dx.doi.org/10.20517/cdr.2023.58 Page 786
does checkpoint inhibitor immunotherapy not work for all patients? Am Soc Clin Oncol Educ Book 2019;39:147-64. DOI
+
+
109. Viehl CT, Moore TT, Liyanage UK, et al. Depletion of CD4 CD25 regulatory T cells promotes a tumor-specific immune response
in pancreas cancer-bearing mice. Ann Surg Oncol 2006;13:1252-8. DOI
110. Simpson TR, Li F, Montalvo-Ortiz W, et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of
anti-CTLA-4 therapy against melanoma. J Exp Med 2013;210:1695-710. DOI
111. Meyer C, Cagnon L, Costa-Nunes CM, et al. Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients
treated with ipilimumab. Cancer Immunol Immunother 2014;63:247-57. DOI
112. Kaneda MM, Messer KS, Ralainirina N, et al. PI3Kγ is a molecular switch that controls immune suppression. Nature 2016;539:437-
42. DOI
113. De Henau O, Rausch M, Winkler D, et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid
cells. Nature 2016;539:443-7. DOI
114. Chanmee T, Ontong P, Konno K, Itano N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers
2014;6:1670-90. DOI
115. Qian BZ, Li J, Zhang H, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011;475:222-5.
DOI
116. Scholl SM, Pallud C, Beuvon F, et al. Anti-colony-stimulating factor-1 antibody staining in primary breast adenocarcinomas
correlates with marked inflammatory cell infiltrates and prognosis. J Natl Cancer Inst 1994;86:120-6. DOI
117. Zhu Y, Knolhoff BL, Meyer MA, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to
T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res 2014;74:5057-69. DOI
118. Mok S, Koya RC, Tsui C, et al. Inhibition of CSF-1 receptor improves the antitumor efficacy of adoptive cell transfer
immunotherapy. Cancer Res 2014;74:153-61. DOI
119. Najafi M, Farhood B, Mortezaee K. Contribution of regulatory T cells to cancer: a review. J Cell Physiol 2019;234:7983-93. DOI
120. Neel JC, Humbert L, Lebrun JJ. The dual role of TGFβ in human cancer: from tumor suppression to cancer metastasis. ISRN Mol Biol
2012;2012:381428. DOI
121. Gao Z, Dong K, Zhang H. The roles of CD73 in cancer. Biomed Res Int 2014;2014:460654. DOI
122. Sitkovsky MV, Lukashev D, Apasov S, et al. Physiological control of immune response and inflammatory tissue damage by
hypoxia-inducible factors and adenosine A 2A receptors. Annu Rev Immunol 2004;22:657-82. DOI
123. Wang L, Zhou X, Zhou T, et al. Ecto-5’-nucleotidase promotes invasion, migration and adhesion of human breast cancer cells. J
Cancer Res Clin Oncol 2008;134:365-72. DOI
124. Spychala J, Lazarowski E, Ostapkowicz A, Ayscue LH, Jin A, Mitchell BS. Role of estrogen receptor in the regulation of ecto-5’-
nucleotidase and adenosine in breast cancer. Clin Cancer Res 2004;10:708-17. DOI
125. Stagg J, Divisekera U, McLaughlin N, et al. Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad
Sci U S A 2010;107:1547-52. DOI
126. Koyama S, Akbay EA, Li YY, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative
immune checkpoints. Nat Commun 2016;7:10501. DOI
+
127. Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, et al. Tumor-infiltrating NY-ESO-1-specific CD8 T cells are negatively regulated by
LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci U S A 2010;107:7875-80. DOI
+
128. Johnston RJ, Comps-Agrar L, Hackney J, et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8 T cell effector
function. Cancer Cell 2014;26:923-37. DOI
129. Thommen DS, Schreiner J, Müller P, et al. Progression of lung cancer is associated with increased dysfunction of T cells defined by
coexpression of multiple inhibitory receptors. Cancer Immunol Res 2015;3:1344-55. DOI
130. Davar D, Boasberg P, Eroglu Z, et al. A phase 1 study of TSR-022, an anti-TIM-3 monoclonal antibody, in combination with TSR-
042 (anti-PD-1) in patients with colorectal cancer and post-PD-1 NSCLC and melanoma. In: SITC 2018. p.106-7. Available from:
https://higherlogicdownload.s3.amazonaws.com/SITCANCER/7aaf41a8-2b65-4783-b86e-d48d26ce14f8/UploadedImages/Annual_
Meeting_2018/Annual_Meeting/Abstracts/Abstract_Book_Edited_11_20.pdf. [Last accessed on 15 Nov 2023].
131. Ascierto PA, Bono P, Bhatia S, et al. Efficacy of BMS-986016, a monoclonal antibody that targets lymphocyte activation gene-3
(LAG-3), in combination with nivolumab in pts with melanoma who progressed during prior anti-PD-1/PD-L1 therapy (mel prior IO)
in all-comer and biomarker-enriched populations. Ann Oncol 2017;28:v611-2. DOI
132. Rodriguez-Abreu D, Johnson ML, Hussein MA, et al. Primary analysis of a randomized, double-blind, phase II study of the anti-
TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first-line (1L) treatment in patients with
PD-L1-selected NSCLC (CITYSCAPE). J Clin Oncol 2020;38:9503. DOI
133. Nair VS, El Salhat H, Taha RZ, John A, Ali BR, Elkord E. DNA methylation and repressive H3K9 and H3K27 trimethylation in the
promoter regions of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, and PD-L1 genes in human primary breast cancer. Clin Epigenetics
2018;10:78. DOI
134. Hong DS, Schoffski P, Calvo A, et al. Phase I/II study of LAG525 ± spartalizumab (PDR001) in patients (pts) with advanced
malignancies. J Clin Oncol 2018;36:3012. DOI
135. Jacobs F, Agostinetto E, Miggiano C, De Sanctis R, Zambelli A, Santoro A. Hope and hype around immunotherapy in triple-negative
breast cancer. Cancers 2023;15:2933. DOI
136. Agostinetto E, Losurdo A, Nader-Marta G, et al. Progress and pitfalls in the use of immunotherapy for patients with triple negative