Page 129 - Read Online
P. 129

Wong et al. Cancer Drug Resist 2023;6:768-87  https://dx.doi.org/10.20517/cdr.2023.58                                              Page 784

                    breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based
                    chemotherapy: BIG 02-98. J Clin Oncol 2013;31:860-7.  DOI  PubMed
               53.       Ghebeh H, Mohammed S, Al-Omair A, et al. The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer
                    patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia 2006;8:190-8.  DOI
                    PubMed  PMC
               54.       Loi S, Giobbie-Hurder A, Gombos A, et al. Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive
                    breast cancer (PANACEA): a single-arm, multicentre, phase 1b-2 trial. Lancet Oncol 2019;20:371-82.  DOI  PubMed
               55.       Emens LA, Esteva FJ, Beresford M, et al. Trastuzumab emtansine plus atezolizumab versus trastuzumab emtansine plus placebo in
                    previously treated, HER2-positive advanced breast cancer (KATE2): a phase 2, multicentre, randomised, double-blind trial. Lancet
                    Oncol 2020;21:1283-95.  DOI
               56.       Agostinetto E, Montemurro F, Puglisi F, et al. Immunotherapy for HER2-positive breast cancer: clinical evidence and future
                    perspectives. Cancers 2022;14:2136.  DOI  PubMed  PMC
               57.       Yang T, Kang L, Li D, Song Y. Immunotherapy for HER-2 positive breast cancer. Front Oncol 2023;13:1097983.  DOI  PubMed
                    PMC
               58.       Goldberg J, Pastorello RG, Vallius T, et al. The immunology of hormone receptor positive breast cancer. Front Immunol
                    2021;12:674192.  DOI  PubMed  PMC
               59.       Anders C, Carey LA. Understanding and treating triple-negative breast cancer. Oncology 2008;22:1233-43.  PubMed  PMC
               60.       Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell
                    2017;168:707-23.  DOI  PubMed  PMC
               61.       Sanchez-Vega F, Mina M, Armenia J, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell 2018;173:321-37.e10.
                    DOI  PubMed  PMC
               62.       Liu C, Peng W, Xu C, et al. BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive
                    immunotherapy in mice. Clin Cancer Res 2013;19:393-403.  DOI  PubMed  PMC
               63.       Hu-Lieskovan S, Mok S, Homet Moreno B, et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in
                    BRAF V600E  melanoma. Sci Transl Med 2015;7:279ra41.  DOI  PubMed  PMC
               64.       Loi S, Dushyanthen S, Beavis PA, et al. RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-
                    negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin Cancer Res
                    2016;22:1499-509.  DOI
               65.       Brufsky A, Kim SB, Zvirbule Z, et al. Phase II COLET study: atezolizumab (A) + cobimetinib (C) + paclitaxel (P)/nab-paclitaxel (nP)
                    as first-line (1L) treatment (tx) for patients (pts) with locally advanced or metastatic triple-negative breast cancer (mTNBC). JCO
                    2019;37:1013.  DOI
               66.       Ellis H, Ma CX. PI3K inhibitors in breast cancer therapy. Curr Oncol Rep 2019;21:110.  DOI  PubMed
               67.       Kruger DT, Opdam M, Sanders J, van der Noort V, Boven E, Linn SC. Hierarchical clustering of PI3K and MAPK pathway proteins
                    in breast cancer intrinsic subtypes. APMIS 2020;128:298-307.  DOI  PubMed  PMC
               68.       Peng W, Chen JQ, Liu C, et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov 2016;6:202-16.
                    DOI
               69.       Voron T, Marcheteau E, Pernot S, et al. Control of the immune response by pro-angiogenic factors. Front Oncol 2014;4:70.  DOI
                    PubMed  PMC
               70.       Schmid P, Loirat D, Savas P, et al. Abstract CT049: phase Ib study evaluating a triplet combination of ipatasertib (IPAT),
                    atezolizumab (atezo), and paclitaxel (PAC) or nab-PAC as first-line (1L) therapy for locally advanced/metastatic triple-negative
                    breast cancer (TNBC). Cancer Res 2019;79:CT049.  DOI
               71.       Schmid P, Nowecki Z, Im SA, et al. Abstract PD10-03: BEGONIA: phase 1b/2 study of durvalumab (D) combinations in locally
                    advanced/metastatic triple-negative breast cancer (TNBC): results from Arm 1 D + paclitaxel (P), Arm 2 D+P + capivasertib (C), and
                    Arm 5 D+P + oleclumab (O). Cancer Res 2022;82:PD10-03.  DOI
               72.      MacDonald BT, Tamai K, He X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009;17:9-26.  DOI
               73.       Hanna A, Balko JM. Breast cancer resistance mechanisms: challenges to immunotherapy. Breast Cancer Res Treat 2021;190:5-17.
                    DOI
               74.       Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 2015;523:231-5.
                    DOI
               75.       Castagnoli L, Cancila V, Cordoba-Romero SL, et al. WNT signaling modulates PD-L1 expression in the stem cell compartment of
                    triple-negative breast cancer. Oncogene 2019;38:4047-60.  DOI
               76.       Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 2005;5:375-86.  DOI
               77.       Kotredes KP, Gamero AM. Interferons as inducers of apoptosis in malignant cells. J Interferon Cytokine Res 2013;33:162-70.  DOI
               78.       Zaretsky JM, Garcia-Diaz A, Shin DS, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J
                    Med 2016;375:819-29.  DOI
               79.       Gao J, Shi LZ, Zhao H, et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell
                    2016;167:397-404.e9.  DOI
               80.       Bourré L. Targeting tumor-associated antigens and tumor-specific antigens. Crown Bioscience. Available from: https://blog.
                    crownbio.com/targeting-tumor-associated-antigens-and-tumor-specific-antigens. [Last accessed on 15 Nov 2023].
   124   125   126   127   128   129   130   131   132   133   134