Page 129 - Read Online
P. 129
Wong et al. Cancer Drug Resist 2023;6:768-87 https://dx.doi.org/10.20517/cdr.2023.58 Page 784
breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based
chemotherapy: BIG 02-98. J Clin Oncol 2013;31:860-7. DOI PubMed
53. Ghebeh H, Mohammed S, Al-Omair A, et al. The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer
patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia 2006;8:190-8. DOI
PubMed PMC
54. Loi S, Giobbie-Hurder A, Gombos A, et al. Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive
breast cancer (PANACEA): a single-arm, multicentre, phase 1b-2 trial. Lancet Oncol 2019;20:371-82. DOI PubMed
55. Emens LA, Esteva FJ, Beresford M, et al. Trastuzumab emtansine plus atezolizumab versus trastuzumab emtansine plus placebo in
previously treated, HER2-positive advanced breast cancer (KATE2): a phase 2, multicentre, randomised, double-blind trial. Lancet
Oncol 2020;21:1283-95. DOI
56. Agostinetto E, Montemurro F, Puglisi F, et al. Immunotherapy for HER2-positive breast cancer: clinical evidence and future
perspectives. Cancers 2022;14:2136. DOI PubMed PMC
57. Yang T, Kang L, Li D, Song Y. Immunotherapy for HER-2 positive breast cancer. Front Oncol 2023;13:1097983. DOI PubMed
PMC
58. Goldberg J, Pastorello RG, Vallius T, et al. The immunology of hormone receptor positive breast cancer. Front Immunol
2021;12:674192. DOI PubMed PMC
59. Anders C, Carey LA. Understanding and treating triple-negative breast cancer. Oncology 2008;22:1233-43. PubMed PMC
60. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell
2017;168:707-23. DOI PubMed PMC
61. Sanchez-Vega F, Mina M, Armenia J, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell 2018;173:321-37.e10.
DOI PubMed PMC
62. Liu C, Peng W, Xu C, et al. BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive
immunotherapy in mice. Clin Cancer Res 2013;19:393-403. DOI PubMed PMC
63. Hu-Lieskovan S, Mok S, Homet Moreno B, et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in
BRAF V600E melanoma. Sci Transl Med 2015;7:279ra41. DOI PubMed PMC
64. Loi S, Dushyanthen S, Beavis PA, et al. RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-
negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin Cancer Res
2016;22:1499-509. DOI
65. Brufsky A, Kim SB, Zvirbule Z, et al. Phase II COLET study: atezolizumab (A) + cobimetinib (C) + paclitaxel (P)/nab-paclitaxel (nP)
as first-line (1L) treatment (tx) for patients (pts) with locally advanced or metastatic triple-negative breast cancer (mTNBC). JCO
2019;37:1013. DOI
66. Ellis H, Ma CX. PI3K inhibitors in breast cancer therapy. Curr Oncol Rep 2019;21:110. DOI PubMed
67. Kruger DT, Opdam M, Sanders J, van der Noort V, Boven E, Linn SC. Hierarchical clustering of PI3K and MAPK pathway proteins
in breast cancer intrinsic subtypes. APMIS 2020;128:298-307. DOI PubMed PMC
68. Peng W, Chen JQ, Liu C, et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov 2016;6:202-16.
DOI
69. Voron T, Marcheteau E, Pernot S, et al. Control of the immune response by pro-angiogenic factors. Front Oncol 2014;4:70. DOI
PubMed PMC
70. Schmid P, Loirat D, Savas P, et al. Abstract CT049: phase Ib study evaluating a triplet combination of ipatasertib (IPAT),
atezolizumab (atezo), and paclitaxel (PAC) or nab-PAC as first-line (1L) therapy for locally advanced/metastatic triple-negative
breast cancer (TNBC). Cancer Res 2019;79:CT049. DOI
71. Schmid P, Nowecki Z, Im SA, et al. Abstract PD10-03: BEGONIA: phase 1b/2 study of durvalumab (D) combinations in locally
advanced/metastatic triple-negative breast cancer (TNBC): results from Arm 1 D + paclitaxel (P), Arm 2 D+P + capivasertib (C), and
Arm 5 D+P + oleclumab (O). Cancer Res 2022;82:PD10-03. DOI
72. MacDonald BT, Tamai K, He X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009;17:9-26. DOI
73. Hanna A, Balko JM. Breast cancer resistance mechanisms: challenges to immunotherapy. Breast Cancer Res Treat 2021;190:5-17.
DOI
74. Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 2015;523:231-5.
DOI
75. Castagnoli L, Cancila V, Cordoba-Romero SL, et al. WNT signaling modulates PD-L1 expression in the stem cell compartment of
triple-negative breast cancer. Oncogene 2019;38:4047-60. DOI
76. Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 2005;5:375-86. DOI
77. Kotredes KP, Gamero AM. Interferons as inducers of apoptosis in malignant cells. J Interferon Cytokine Res 2013;33:162-70. DOI
78. Zaretsky JM, Garcia-Diaz A, Shin DS, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J
Med 2016;375:819-29. DOI
79. Gao J, Shi LZ, Zhao H, et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell
2016;167:397-404.e9. DOI
80. Bourré L. Targeting tumor-associated antigens and tumor-specific antigens. Crown Bioscience. Available from: https://blog.
crownbio.com/targeting-tumor-associated-antigens-and-tumor-specific-antigens. [Last accessed on 15 Nov 2023].