Page 91 - Read Online
P. 91

Zhang et al. Ageing Neur Dis 2023;3:24  https://dx.doi.org/10.20517/and.2023.18  Page 13 of 13

               56.      Chen Y, Yu J, Niu Y, et al. Modeling rett syndrome using TALEN-edited MECP2 Mutant cynomolgus monkeys. Cell 2017;169:945-
                   55.e10.  DOI  PubMed  PMC
               57.      Tu Z, Zhao H, Li B, et al. CRISPR/Cas9-mediated disruption of SHANK3 in monkey leads to drug-treatable autism-like symptoms.
                   Hum Mol Genet 2019;28:561-71.  DOI  PubMed  PMC
               58.      Haznedar MM, Buchsbaum MS, Hazlett EA, LiCalzi EM, Cartwright C, Hollander E. Volumetric analysis and three-dimensional
                   glucose metabolic mapping of the striatum and thalamus in patients with autism spectrum disorders. Am J Psychiatry 2006;163:1252-
                   63.  DOI  PubMed
               59.      Buchsbaum MS, Hollander E, Haznedar MM, et al. Effect of fluoxetine on regional cerebral metabolism in autistic spectrum disorders:
                   a pilot study. Int J Neuropsychopharmacol 2001;4:119-25.  DOI
               60.      Durand CM, Betancur C, Boeckers TM, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated
                   with autism spectrum disorders. Nat Genet 2007;39:25-7.  DOI  PubMed  PMC
               61.      Richards C, Powis L, Moss J, Stinton C, Nelson L, Oliver C. Prospective study of autism phenomenology and the behavioural
                   phenotype of Phelan-McDermid syndrome: comparison to fragile X syndrome, Down syndrome and idiopathic autism spectrum
                   disorder. J Neurodev Disord 2017;9:37.  DOI  PubMed  PMC
               62.      Phelan K, McDermid HE. The 22q13.3 deletion syndrome (phelan-mcdermid syndrome). Mol Syndromol 2012;2:186-201.  DOI
                   PubMed  PMC
               63.      Wu L, Mei S, Yu S, Han S, Zhang YQ. Shank3 mutations enhance early neural responses to deviant tones in dogs. Cereb Cortex
                   2023;33:10546-57.  DOI
               64.      Zhao L, Li Y, Kou X, et al. Stem cells from human exfoliated deciduous teeth ameliorate autistic-like behaviors of SHANK3 mutant
                   beagle dogs. Stem Cells Transl Med 2022;11:778-89.  DOI  PubMed  PMC
               65.      Yang W, Guo X, Tu Z, et al. PINK1 kinase dysfunction triggers neurodegeneration in the primate brain without impacting
                   mitochondrial homeostasis. Protein Cell 2022;13:26-46.  DOI  PubMed  PMC
               66.      Kitada T, Pisani A, Porter DR, et al. Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc
                   Natl Acad Sci U S A 2007;104:11441-6.  DOI  PubMed  PMC
               67.      Akundi RS, Huang Z, Eason J, et al. Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes
                   precede dopaminergic defects in Pink1-deficient mice. PLoS One 2011;6:e16038.  DOI  PubMed  PMC
               68.      Xiong H, Wang D, Chen L, et al. Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein
                   degradation. J Clin Invest 2009;119:650-60.  DOI  PubMed  PMC
               69.      Yang W, Liu Y, Tu Z, et al. CRISPR/Cas9-mediated PINK1 deletion leads to neurodegeneration in rhesus monkeys. Cell Res
                   2019;29:334-6.  DOI  PubMed  PMC
               70.      Wang Y, Chiola S, Yang G, et al. Modeling human telencephalic development and autism-associated SHANK3 deficiency using
                   organoids generated from single neural rosettes. Nat Commun 2022;13:5688.  DOI  PubMed  PMC
   86   87   88   89   90   91   92   93   94   95   96