Page 34 - Read Online
P. 34

Page 12 of 13                       Li et al. Ageing Neur Dis 2022;2:13  https://dx.doi.org/10.20517/and.2022.13

               56.      Beckman D, Chakrabarty P, Ott S, et al. A novel tau-based rhesus monkey model of Alzheimer’s pathogenesis. Alzheimers Dement
                   2021;17:933-45.  DOI  PubMed  PMC
               57.      Kragh PM, Nielsen AL, Li J, et al. Hemizygous minipigs produced by random gene insertion and handmade cloning express the
                   Alzheimer’s disease-causing dominant mutation APPsw. Transgenic Res 2009;18:545-58.  DOI  PubMed
               58.      Jakobsen JE, Johansen MG, Schmidt M, et al. Generation of minipigs with targeted transgene insertion by recombinase-mediated
                   cassette exchange (RMCE) and somatic cell nuclear transfer (SCNT). Transgenic Res 2013;22:709-23.  DOI  PubMed  PMC
               59.      Jakobsen JE, Johansen MG, Schmidt M, et al. Expression of the Alzheimer’s disease mutations AβPP695sw and PSEN1M146I in
                   double-transgenic göttingen minipigs. J Alzheimers Dis 2016;53:1617-30.  DOI  PubMed
               60.      Lee SE, Hyun H, Park MR, et al. Production of transgenic pig as an Alzheimer’s disease model using a multi-cistronic vector system.
                   PLoS One 2017;12:e0177933.  DOI  PubMed  PMC
               61.      Raza C, Anjum R, Shakeel NUA. Parkinson’s disease: mechanisms, translational models and management strategies. Life Sci
                   2019;226:77-90.  DOI  PubMed
               62.      Chia SJ, Tan EK, Chao YX. Historical perspective: models of Parkinson’s disease. Int J Mol Sci 2020;21:2464.  DOI  PubMed  PMC
               63.      Grow DA, McCarrey JR, Navara CS. Advantages of nonhuman primates as preclinical models for evaluating stem cell-based therapies
                   for Parkinson’s disease. Stem Cell Res 2016;17:352-66.  DOI  PubMed
               64.      Kitada T, Pisani A, Porter DR, et al. Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc
                   Natl Acad Sci U S A 2007;104:11441-6.  DOI  PubMed  PMC
               65.      Dawson TM, Ko HS, Dawson VL. Genetic animal models of Parkinson’s disease. Neuron 2010;66:646-61.  DOI  PubMed  PMC
               66.      Yang W, Liu Y, Tu Z, et al. CRISPR/Cas9-mediated PINK1 deletion leads to neurodegeneration in rhesus monkeys. Cell Res
                   2019;29:334-6.  DOI  PubMed  PMC
               67.      Yang W, Guo X, Tu Z, et al. PINK1 kinase dysfunction triggers neurodegeneration in the primate brain without impacting
                   mitochondrial homeostasis. Protein Cell 2022;13:26-46.  DOI  PubMed  PMC
               68.      Yao J, Huang J, Hai T, et al. Efficient bi-allelic gene knockout and site-specific knock-in mediated by TALENs in pigs. Sci Rep
                   2014;4:6926.  DOI  PubMed  PMC
               69.      Zhou X, Xin J, Fan N, et al. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life
                   Sci 2015;72:1175-84.  DOI  PubMed
               70.      Wang X, Cao C, Huang J, et al. One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system. Sci Rep 2016;6:20620.
                   DOI  PubMed  PMC
               71.      Yuan H, Yu T, Wang L, et al. Efficient base editing by RNA-guided cytidine base editors (CBEs) in pigs. Cell Mol Life Sci
                   2020;77:719-33.  DOI  PubMed
               72.      Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded
                   DNA cleavage. Nature 2016;533:420-4.  DOI  PubMed  PMC
               73.      Nishida K, Arazoe T, Yachie N, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems.
                   Science 2016;353:aaf8729.  DOI  PubMed
               74.      Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature
                   2017;551:464-71.  DOI  PubMed  PMC
               75.      Molla KA, Yang Y. CRISPR/Cas-mediated base editing: technical considerations and practical applications. Trends Biotechnol
                   2019;37:1121-42.  DOI  PubMed
               76.      Ryu SM, Koo T, Kim K, et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy.
                   Nat Biotechnol 2018;36:536-9.  DOI  PubMed
               77.      Lee HK, Willi M, Miller SM, et al. Targeting fidelity of adenine and cytosine base editors in mouse embryos. Nat Commun
                   2018;9:4804.  DOI  PubMed  PMC
               78.      Ma Y, Yu L, Zhang X, et al. Highly efficient and precise base editing by engineered dCas9-guide tRNA adenosine deaminase in rats.
                   Cell Discov 2018;4:39.  DOI  PubMed  PMC
               79.      Liu Z, Chen M, Chen S, et al. Highly efficient RNA-guided base editing in rabbit. Nat Commun 2018;9:2717.  DOI  PubMed  PMC
               80.      Zhang X, Li W, Liu C, et al. Alteration of sheep coat color pattern by disruption of ASIP gene via CRISPR Cas9. Sci Rep 2017;7:8149.
                   DOI  PubMed  PMC
               81.      Hua K, Tao X, Yuan F, Wang D, Zhu JK. Precise A·T to G·C base editing in the rice genome. Mol Plant 2018;11:627-30.  DOI
                   PubMed
               82.      Li C, Zong Y, Wang Y, et al. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol
                   2018;19:59.  DOI  PubMed  PMC
               83.      Li G, Zhou S, Li C, et al. Base pair editing in goat: nonsense codon introgression into FGF5 results in longer hair. FEBS J
                   2019;286:4675-92.  DOI  PubMed
               84.      Zhou S, Cai B, He C, et al. Programmable base editing of the sheep genome revealed no genome-wide off-target mutations. Front
                   Genet 2019;10:215.  DOI  PubMed  PMC
               85.      Li Z, Duan X, An X, et al. Efficient RNA-guided base editing for disease modeling in pigs. Cell Discov 2018;4:64.  DOI  PubMed
                   PMC
               86.      Haigh A, Chou JY, O’Driscoll K. Variations in the behavior of pigs during an open field and novel object test. Front Vet Sci
                   2020;7:607.  DOI  PubMed  PMC
   29   30   31   32   33   34   35   36   37   38   39