Page 33 - Read Online
P. 33

Li et al. Ageing Neur Dis 2022;2:13  https://dx.doi.org/10.20517/and.2022.13    Page 11 of 13

               24.      Suzuki S, Iwamoto M, Saito Y, et al. Il2rg gene-targeted severe combined immunodeficiency pigs. Cell Stem Cell 2012;10:753-8.
                   DOI  PubMed
               25.      Carroll D. Genome engineering with zinc-finger nucleases. Genetics 2011;188:773-82.  DOI  PubMed  PMC
               26.      Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S. Zinc finger nucleases: custom-designed molecular scissors for
                   genome engineering of plant and mammalian cells. Nucleic Acids Res 2005;33:5978-90.  DOI  PubMed  PMC
               27.      Christian M, Cermak T, Doyle EL, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010;186:757-
                   61.  DOI  PubMed  PMC
               28.      Mussolino C, Cathomen T. TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol 2012;23:644-50.  DOI
                   PubMed
               29.      Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 2013;14:49-55.
                   DOI  PubMed  PMC
               30.      Yoshimi K, Mashimo T. Application of genome editing technologies in rats for human disease models. J Hum Genet 2018;63:115-23.
                   DOI  PubMed
               31.      Liu H, Chen Y, Niu Y, et al. TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell 2014;14:323-8.
                   DOI  PubMed  PMC
               32.      Niu Y, Shen B, Cui Y, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell
                   embryos. Cell 2014;156:836-43.  DOI  PubMed
               33.      Wang H, Yang H, Shivalila CS, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated
                   genome engineering. Cell 2013;153:910-8.  DOI  PubMed  PMC
               34.      Ma Y, Zhang X, Shen B, et al. Generating rats with conditional alleles using CRISPR/Cas9. Cell Res 2014;24:122-5.  DOI  PubMed
                   PMC
               35.      Kim H, Kim JS. A guide to genome engineering with programmable nucleases. Nat Rev Genet 2014;15:321-34.  DOI  PubMed
               36.      Dion PA, Daoud H, Rouleau GA. Genetics of motor neuron disorders: new insights into pathogenic mechanisms. Nat Rev Genet
                   2009;10:769-82.  DOI  PubMed
               37.      Boillée S, Vande Velde C, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 2006;52:39-59.
                   DOI  PubMed
               38.      Chieppa MN, Perota A, Corona C, et al. Modeling amyotrophic lateral sclerosis in hSOD1 transgenic swine. Neurodegener Dis
                   2014;13:246-54.  DOI  PubMed
               39.      Wang G, Yang H, Yan S, et al. Cytoplasmic mislocalization of RNA splicing factors and aberrant neuronal gene splicing in TDP-43
                   transgenic pig brain. Mol Neurodegener 2015;10:42.  DOI  PubMed  PMC
               40.      Shan X, Chiang PM, Price DL, Wong PC. Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of
                   TDP-43 transgenic mice. Proc Natl Acad Sci U S A 2010;107:16325-30.  DOI  PubMed  PMC
               41.      Wils H, Kleinberger G, Janssens J, et al. TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of
                   ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A 2010;107:3858-63.  DOI  PubMed  PMC
               42.      Xu YF, Gendron TF, Zhang YJ, et al. Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial
                   aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci 2010;30:10851-9.  DOI  PubMed  PMC
               43.      Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr. Neuropathological classification of Huntington’s
                   disease. J Neuropathol Exp Neurol 1985;44:559-77.  DOI  PubMed
               44.      Saudou F, Humbert S. The biology of Huntingtin. Neuron 2016;89:910-26.  DOI  PubMed
               45.      Wang CE, Tydlacka S, Orr AL, et al. Accumulation of N-terminal mutant huntingtin in mouse and monkey models implicated as a
                   pathogenic mechanism in Huntington’s disease. Hum Mol Genet 2008;17:2738-51.  DOI  PubMed  PMC
               46.      Fan N, Lai L. Genetically modified pig models for human diseases. J Genet Genomics 2013;40:67-73.  DOI  PubMed
               47.      Uchida M, Shimatsu Y, Onoe K, et al. Production of transgenic miniature pigs by pronuclear microinjection. Transgenic Res
                   2001;10:577-82.  DOI  PubMed
               48.      Yang D, Wang CE, Zhao B, et al. Expression of Huntington’s disease protein results in apoptotic neurons in the brains of cloned
                   transgenic pigs. Hum Mol Genet 2010;19:3983-94.  DOI  PubMed  PMC
               49.      Baxa M, Hruska-Plochan M, Juhas S, et al. A transgenic minipig model of Huntington’s Disease. J Huntingtons Dis 2013;2:47-68.
                   DOI  PubMed
               50.      Yan S, Tu Z, Liu Z, et al. A Huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington’s
                   disease. Cell 2018;173:989-1002.e13.  DOI  PubMed  PMC
               51.      Luo JE, Li YM. Turning the tide on Alzheimer’s disease: modulation of γ-secretase. Cell Biosci 2022;12:2.  DOI  PubMed  PMC
               52.      Zhang L, Chen C, Mak MS, et al. Advance of sporadic Alzheimer’s disease animal models. Med Res Rev 2020;40:431-58.  DOI
                   PubMed
               53.      Shi Y, Holtzman DM. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat Rev
                   Immunol 2018;18:759-72.  DOI  PubMed  PMC
               54.      Felice FG, Munoz DP. Opportunities and challenges in developing relevant animal models for Alzheimer’s disease. Ageing Res Rev
                   2016;26:112-4.  DOI  PubMed
               55.      Forny-Germano L, Lyra e Silva NM, Batista AF, et al. Alzheimer’s disease-like pathology induced by amyloid-β oligomers in
                   nonhuman primates. J Neurosci 2014;34:13629-43.  DOI  PubMed  PMC
   28   29   30   31   32   33   34   35   36   37   38