Page 33 - Read Online
P. 33
Li et al. Ageing Neur Dis 2022;2:13 https://dx.doi.org/10.20517/and.2022.13 Page 11 of 13
24. Suzuki S, Iwamoto M, Saito Y, et al. Il2rg gene-targeted severe combined immunodeficiency pigs. Cell Stem Cell 2012;10:753-8.
DOI PubMed
25. Carroll D. Genome engineering with zinc-finger nucleases. Genetics 2011;188:773-82. DOI PubMed PMC
26. Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S. Zinc finger nucleases: custom-designed molecular scissors for
genome engineering of plant and mammalian cells. Nucleic Acids Res 2005;33:5978-90. DOI PubMed PMC
27. Christian M, Cermak T, Doyle EL, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010;186:757-
61. DOI PubMed PMC
28. Mussolino C, Cathomen T. TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol 2012;23:644-50. DOI
PubMed
29. Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 2013;14:49-55.
DOI PubMed PMC
30. Yoshimi K, Mashimo T. Application of genome editing technologies in rats for human disease models. J Hum Genet 2018;63:115-23.
DOI PubMed
31. Liu H, Chen Y, Niu Y, et al. TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell 2014;14:323-8.
DOI PubMed PMC
32. Niu Y, Shen B, Cui Y, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell
embryos. Cell 2014;156:836-43. DOI PubMed
33. Wang H, Yang H, Shivalila CS, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated
genome engineering. Cell 2013;153:910-8. DOI PubMed PMC
34. Ma Y, Zhang X, Shen B, et al. Generating rats with conditional alleles using CRISPR/Cas9. Cell Res 2014;24:122-5. DOI PubMed
PMC
35. Kim H, Kim JS. A guide to genome engineering with programmable nucleases. Nat Rev Genet 2014;15:321-34. DOI PubMed
36. Dion PA, Daoud H, Rouleau GA. Genetics of motor neuron disorders: new insights into pathogenic mechanisms. Nat Rev Genet
2009;10:769-82. DOI PubMed
37. Boillée S, Vande Velde C, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 2006;52:39-59.
DOI PubMed
38. Chieppa MN, Perota A, Corona C, et al. Modeling amyotrophic lateral sclerosis in hSOD1 transgenic swine. Neurodegener Dis
2014;13:246-54. DOI PubMed
39. Wang G, Yang H, Yan S, et al. Cytoplasmic mislocalization of RNA splicing factors and aberrant neuronal gene splicing in TDP-43
transgenic pig brain. Mol Neurodegener 2015;10:42. DOI PubMed PMC
40. Shan X, Chiang PM, Price DL, Wong PC. Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of
TDP-43 transgenic mice. Proc Natl Acad Sci U S A 2010;107:16325-30. DOI PubMed PMC
41. Wils H, Kleinberger G, Janssens J, et al. TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of
ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A 2010;107:3858-63. DOI PubMed PMC
42. Xu YF, Gendron TF, Zhang YJ, et al. Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial
aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci 2010;30:10851-9. DOI PubMed PMC
43. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr. Neuropathological classification of Huntington’s
disease. J Neuropathol Exp Neurol 1985;44:559-77. DOI PubMed
44. Saudou F, Humbert S. The biology of Huntingtin. Neuron 2016;89:910-26. DOI PubMed
45. Wang CE, Tydlacka S, Orr AL, et al. Accumulation of N-terminal mutant huntingtin in mouse and monkey models implicated as a
pathogenic mechanism in Huntington’s disease. Hum Mol Genet 2008;17:2738-51. DOI PubMed PMC
46. Fan N, Lai L. Genetically modified pig models for human diseases. J Genet Genomics 2013;40:67-73. DOI PubMed
47. Uchida M, Shimatsu Y, Onoe K, et al. Production of transgenic miniature pigs by pronuclear microinjection. Transgenic Res
2001;10:577-82. DOI PubMed
48. Yang D, Wang CE, Zhao B, et al. Expression of Huntington’s disease protein results in apoptotic neurons in the brains of cloned
transgenic pigs. Hum Mol Genet 2010;19:3983-94. DOI PubMed PMC
49. Baxa M, Hruska-Plochan M, Juhas S, et al. A transgenic minipig model of Huntington’s Disease. J Huntingtons Dis 2013;2:47-68.
DOI PubMed
50. Yan S, Tu Z, Liu Z, et al. A Huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington’s
disease. Cell 2018;173:989-1002.e13. DOI PubMed PMC
51. Luo JE, Li YM. Turning the tide on Alzheimer’s disease: modulation of γ-secretase. Cell Biosci 2022;12:2. DOI PubMed PMC
52. Zhang L, Chen C, Mak MS, et al. Advance of sporadic Alzheimer’s disease animal models. Med Res Rev 2020;40:431-58. DOI
PubMed
53. Shi Y, Holtzman DM. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat Rev
Immunol 2018;18:759-72. DOI PubMed PMC
54. Felice FG, Munoz DP. Opportunities and challenges in developing relevant animal models for Alzheimer’s disease. Ageing Res Rev
2016;26:112-4. DOI PubMed
55. Forny-Germano L, Lyra e Silva NM, Batista AF, et al. Alzheimer’s disease-like pathology induced by amyloid-β oligomers in
nonhuman primates. J Neurosci 2014;34:13629-43. DOI PubMed PMC