Page 26 - Read Online
P. 26
Page 231 Dababneh et al. Art Int Surg 2024;4:214-32 https://dx.doi.org/10.20517/ais.2024.50
39. Anttila TT, Karjalainen TV, Mäkelä TO, et al. Detecting distal radius fractures using a segmentation-based deep learning model. J
Digit Imaging 2023;36:679-87. DOI PubMed PMC
40. Mert S, Stoerzer P, Brauer J, et al. Diagnostic power of ChatGPT 4 in distal radius fracture detection through wrist radiographs. Arch
Orthop Trauma Surg 2024;144:2461-7. DOI PubMed PMC
41. Ozkaya E, Topal FE, Bulut T, Gursoy M, Ozuysal M, Karakaya Z. Evaluation of an artificial intelligence system for diagnosing
scaphoid fracture on direct radiography. Eur J Trauma Emerg Surg 2022;48:585-92. DOI PubMed
42. Hendrix N, Scholten E, Vernhout B, et al. Development and validation of a convolutional neural network for automated detection of
scaphoid fractures on conventional radiographs. Radiol Artif Intell 2021;3:e200260. DOI PubMed PMC
43. Hendrix N, Hendrix W, van Dijke K, et al. Musculoskeletal radiologist-level performance by using deep learning for detection of
scaphoid fractures on conventional multi-view radiographs of hand and wrist. Eur Radiol 2023;33:1575-88. DOI PubMed PMC
44. Tung Y, Su J, Liao Y, et al. High-performance scaphoid fracture recognition via effectiveness assessment of artificial neural networks.
Appl Sci 2021;11:8485. DOI
45. Yang TH, Horng MH, Li RS, Sun YN. Scaphoid fracture detection by using convolutional neural network. Diagnostics 2022;12:895.
DOI PubMed PMC
46. Bulstra AEJ; Machine Learning Consortium. A machine learning algorithm to estimate the probability of a true scaphoid fracture after
wrist trauma. J Hand Surg Am 2022;47:709-18. DOI PubMed
47. Langerhuizen DWG, Bulstra AEJ, Janssen SJ, et al. Is deep learning on par with human observers for detection of radiographically
visible and occult fractures of the scaphoid? Clin Orthop Relat Res 2020;478:2653-9. DOI PubMed PMC
48. Yoon AP, Lee YL, Kane RL, Kuo CF, Lin C, Chung KC. Development and validation of a deep learning model using convolutional
neural networks to identify scaphoid fractures in radiographs. JAMA Netw Open 2021;4:e216096. DOI PubMed PMC
49. Raisuddin AM, Vaattovaara E, Nevalainen M, et al. Critical evaluation of deep neural networks for wrist fracture detection. Sci Rep
2021;11:6006. DOI PubMed PMC
50. Janisch M, Apfaltrer G, Hržić F, et al. Pediatric radius torus fractures in x-rays - how computer vision could render lateral projections
obsolete. Front Pediatr 2022;10:1005099. DOI PubMed PMC
51. Zech JR, Ezuma CO, Patel S, et al. Artificial intelligence improves resident detection of pediatric and young adult upper extremity
fractures. Skeletal Radiol 2024. DOI PubMed
52. Smith AM, Forder JA, Annapureddy SR, Reddy KSK, Amis AA. The porcine forelimb as a model for human flexor tendon surgery. J
Hand Surg Br 2005;30:307-9. DOI PubMed
53. Ilie VG, Ilie VI, Dobreanu C, Ghetu N, Luchian S, Pieptu D. Training of microsurgical skills on nonliving models. Microsurgery
2008;28:571-7. DOI PubMed
54. Watanabe T, Koyama T, Yamada E, Nimura A, Fujita K, Sugiura Y. The accuracy of a screening system for carpal tunnel syndrome
using hand drawing. J Clin Med 2021;10:4437. DOI PubMed PMC
55. Orji C, Reghefaoui M, Saavedra Palacios MS, et al. Application of artificial intelligence and machine learning in diagnosing scaphoid
fractures: a systematic review. Cureus 2023;15:e47732. DOI PubMed PMC
56. Zhang J, Boora N, Melendez S, Rakkunedeth Hareendranathan A, Jaremko J. Diagnostic accuracy of 3D ultrasound and artificial
intelligence for detection of pediatric wrist injuries. Children 2021;8:431. DOI PubMed PMC
57. Knight J, Zhou Y, Keen C, et al. 2D/3D ultrasound diagnosis of pediatric distal radius fractures by human readers vs artificial
intelligence. Sci Rep 2023;13:14535. DOI PubMed PMC
58. Caratsch L, Lechtenboehmer C, Caorsi M, et al. Detection and grading of radiographic hand osteoarthritis using an automated machine
learning platform. ACR Open Rheumatol 2024;6:388-95. DOI PubMed PMC
59. Overgaard BS, Christensen ABH, Terslev L, Savarimuthu TR, Just SA. Artificial intelligence model for segmentation and severity
scoring of osteophytes in hand osteoarthritis on ultrasound images. Front Med 2024;11:1297088. DOI PubMed PMC
60. Loos NL, Hoogendam L, Souer JS, et al; the Hand-Wrist Study Group. Machine learning can be used to predict function but not pain
after surgery for thumb carpometacarpal osteoarthritis. Clin Orthop Relat Res 2022;480:1271-84. DOI PubMed PMC
61. Koyama T, Sato S, Toriumi M, et al. A screening method using anomaly detection on a smartphone for patients with carpal tunnel
syndrome: diagnostic case-control study. JMIR Mhealth Uhealth 2021;9:e26320. DOI PubMed PMC
62. Faeghi F, Ardakani AA, Acharya UR, et al. Accurate automated diagnosis of carpal tunnel syndrome using radiomics features with
ultrasound images: a comparison with radiologists’ assessment. Eur J Radiol 2021;136:109518. DOI PubMed
63. Shinohara I, Inui A, Mifune Y, et al. Using deep learning for ultrasound images to diagnose carpal tunnel syndrome with high
accuracy. Ultrasound Med Biol 2022;48:2052-9. DOI PubMed
64. Mohammadi A, Torres-Cuenca T, Mirza-Aghazadeh-Attari M, Faeghi F, Acharya UR, Abbasian Ardakani A. Deep radiomics features
of median nerves for automated diagnosis of carpal tunnel syndrome with ultrasound images: a multi-center study. J Ultrasound Med
2023;42:2257-68. DOI PubMed
65. Kim SW, Kim S, Shin D, et al. Feasibility of artificial intelligence assisted quantitative muscle ultrasound in carpal tunnel syndrome.
BMC Musculoskelet Disord 2023;24:524. DOI PubMed PMC
66. Kuroiwa T, Jagtap J, Starlinger J, et al. Deep learning estimation of median nerve volume using ultrasound imaging in a human
cadaver model. Ultrasound Med Biol 2022;48:2237-48. DOI PubMed
67. Tsamis KI, Kontogiannis P, Gourgiotis I, Ntabos S, Sarmas I, Manis G. Automatic electrodiagnosis of carpal tunnel syndrome using
machine learning. Bioengineering 2021;8:181. DOI PubMed PMC