Page 26 - Read Online
P. 26

Page 231                                                    Dababneh et al. Art Int Surg 2024;4:214-32  https://dx.doi.org/10.20517/ais.2024.50

               39.      Anttila TT, Karjalainen TV, Mäkelä TO, et al. Detecting distal radius fractures using a segmentation-based deep learning model. J
                   Digit Imaging 2023;36:679-87.  DOI  PubMed  PMC
               40.      Mert S, Stoerzer P, Brauer J, et al. Diagnostic power of ChatGPT 4 in distal radius fracture detection through wrist radiographs. Arch
                   Orthop Trauma Surg 2024;144:2461-7.  DOI  PubMed  PMC
               41.      Ozkaya E, Topal FE, Bulut T, Gursoy M, Ozuysal M, Karakaya Z. Evaluation of an artificial intelligence system for diagnosing
                   scaphoid fracture on direct radiography. Eur J Trauma Emerg Surg 2022;48:585-92.  DOI  PubMed
               42.      Hendrix N, Scholten E, Vernhout B, et al. Development and validation of a convolutional neural network for automated detection of
                   scaphoid fractures on conventional radiographs. Radiol Artif Intell 2021;3:e200260.  DOI  PubMed  PMC
               43.      Hendrix N, Hendrix W, van Dijke K, et al. Musculoskeletal radiologist-level performance by using deep learning for detection of
                   scaphoid fractures on conventional multi-view radiographs of hand and wrist. Eur Radiol 2023;33:1575-88.  DOI  PubMed  PMC
               44.      Tung Y, Su J, Liao Y, et al. High-performance scaphoid fracture recognition via effectiveness assessment of artificial neural networks.
                   Appl Sci 2021;11:8485.  DOI
               45.      Yang TH, Horng MH, Li RS, Sun YN. Scaphoid fracture detection by using convolutional neural network. Diagnostics 2022;12:895.
                   DOI  PubMed  PMC
               46.      Bulstra AEJ; Machine Learning Consortium. A machine learning algorithm to estimate the probability of a true scaphoid fracture after
                   wrist trauma. J Hand Surg Am 2022;47:709-18.  DOI  PubMed
               47.      Langerhuizen DWG, Bulstra AEJ, Janssen SJ, et al. Is deep learning on par with human observers for detection of radiographically
                   visible and occult fractures of the scaphoid? Clin Orthop Relat Res 2020;478:2653-9.  DOI  PubMed  PMC
               48.      Yoon AP, Lee YL, Kane RL, Kuo CF, Lin C, Chung KC. Development and validation of a deep learning model using convolutional
                   neural networks to identify scaphoid fractures in radiographs. JAMA Netw Open 2021;4:e216096.  DOI  PubMed  PMC
               49.      Raisuddin AM, Vaattovaara E, Nevalainen M, et al. Critical evaluation of deep neural networks for wrist fracture detection. Sci Rep
                   2021;11:6006.  DOI  PubMed  PMC
               50.      Janisch M, Apfaltrer G, Hržić F, et al. Pediatric radius torus fractures in x-rays - how computer vision could render lateral projections
                   obsolete. Front Pediatr 2022;10:1005099.  DOI  PubMed  PMC
               51.      Zech JR, Ezuma CO, Patel S, et al. Artificial intelligence improves resident detection of pediatric and young adult upper extremity
                   fractures. Skeletal Radiol 2024.  DOI  PubMed
               52.      Smith AM, Forder JA, Annapureddy SR, Reddy KSK, Amis AA. The porcine forelimb as a model for human flexor tendon surgery. J
                   Hand Surg Br 2005;30:307-9.  DOI  PubMed
               53.      Ilie VG, Ilie VI, Dobreanu C, Ghetu N, Luchian S, Pieptu D. Training of microsurgical skills on nonliving models. Microsurgery
                   2008;28:571-7.  DOI  PubMed
               54.      Watanabe T, Koyama T, Yamada E, Nimura A, Fujita K, Sugiura Y. The accuracy of a screening system for carpal tunnel syndrome
                   using hand drawing. J Clin Med 2021;10:4437.  DOI  PubMed  PMC
               55.      Orji C, Reghefaoui M, Saavedra Palacios MS, et al. Application of artificial intelligence and machine learning in diagnosing scaphoid
                   fractures: a systematic review. Cureus 2023;15:e47732.  DOI  PubMed  PMC
               56.      Zhang J, Boora N, Melendez S, Rakkunedeth Hareendranathan A, Jaremko J. Diagnostic accuracy of 3D ultrasound and artificial
                   intelligence for detection of pediatric wrist injuries. Children 2021;8:431.  DOI  PubMed  PMC
               57.      Knight J, Zhou Y, Keen C, et al. 2D/3D ultrasound diagnosis of pediatric distal radius fractures by human readers vs artificial
                   intelligence. Sci Rep 2023;13:14535.  DOI  PubMed  PMC
               58.      Caratsch L, Lechtenboehmer C, Caorsi M, et al. Detection and grading of radiographic hand osteoarthritis using an automated machine
                   learning platform. ACR Open Rheumatol 2024;6:388-95.  DOI  PubMed  PMC
               59.      Overgaard BS, Christensen ABH, Terslev L, Savarimuthu TR, Just SA. Artificial intelligence model for segmentation and severity
                   scoring of osteophytes in hand osteoarthritis on ultrasound images. Front Med 2024;11:1297088.  DOI  PubMed  PMC
               60.      Loos NL, Hoogendam L, Souer JS, et al; the Hand-Wrist Study Group. Machine learning can be used to predict function but not pain
                   after surgery for thumb carpometacarpal osteoarthritis. Clin Orthop Relat Res 2022;480:1271-84.  DOI  PubMed  PMC
               61.      Koyama T, Sato S, Toriumi M, et al. A screening method using anomaly detection on a smartphone for patients with carpal tunnel
                   syndrome: diagnostic case-control study. JMIR Mhealth Uhealth 2021;9:e26320.  DOI  PubMed  PMC
               62.      Faeghi F, Ardakani AA, Acharya UR, et al. Accurate automated diagnosis of carpal tunnel syndrome using radiomics features with
                   ultrasound images: a comparison with radiologists’ assessment. Eur J Radiol 2021;136:109518.  DOI  PubMed
               63.      Shinohara I, Inui A, Mifune Y, et al. Using deep learning for ultrasound images to diagnose carpal tunnel syndrome with high
                   accuracy. Ultrasound Med Biol 2022;48:2052-9.  DOI  PubMed
               64.      Mohammadi A, Torres-Cuenca T, Mirza-Aghazadeh-Attari M, Faeghi F, Acharya UR, Abbasian Ardakani A. Deep radiomics features
                   of median nerves for automated diagnosis of carpal tunnel syndrome with ultrasound images: a multi-center study. J Ultrasound Med
                   2023;42:2257-68.  DOI  PubMed
               65.      Kim SW, Kim S, Shin D, et al. Feasibility of artificial intelligence assisted quantitative muscle ultrasound in carpal tunnel syndrome.
                   BMC Musculoskelet Disord 2023;24:524.  DOI  PubMed  PMC
               66.      Kuroiwa T, Jagtap J, Starlinger J, et al. Deep learning estimation of median nerve volume using ultrasound imaging in a human
                   cadaver model. Ultrasound Med Biol 2022;48:2237-48.  DOI  PubMed
               67.      Tsamis KI, Kontogiannis P, Gourgiotis I, Ntabos S, Sarmas I, Manis G. Automatic electrodiagnosis of carpal tunnel syndrome using
                   machine learning. Bioengineering 2021;8:181.  DOI  PubMed  PMC
   21   22   23   24   25   26   27   28   29   30   31